
Meta’s Second Generation AI Chip:
Model-Chip Co-Design and Productionization Experiences

Joel Coburn1, Chunqiang Tang1, Adam Hutchin, Ajit Mathews, Alex Mastro, Amin Firoozshahian2, Amit Nagpal, Aravind Sukumaran-Rajam, Arushi

Sharma, Ashwin Kamath, Ashwin Narasimha, Bhasker Jakka, Brian Dodds, Cao Gao, David Reiss, Deboleena Roy, Eleanor Ozer, Emmanuel Menage,

Eran Tal, Erum Kazi, Feixiong Zhang, Guoqiang Jerry Chen, Hangchen Yu, Harikrishna Reddy, Harish Dixit, Indu Kalyanaraman, Jack Montgomery,

Jian Huang, Jinghan Yang, Jiyuan Zhang, Jongsoo Park2, Junhan Hu, Kaustubh Gondkar, Mahesh Maddury, Maxim Naumov, Mike Tsai, Mohammed

Sourouri, Neeraj Agrawal, Olivia Wu, Olusiji Medaiyese, Pankaj Kansal, Pavan Shetty, Poorvaja Ramani, Pritesh Modi, Raviteja Chinta, Richard

Wareing, Roman Levenstein, Sameer Abu Asal, Saritha Dwarakapuram, Sathish Sekar, Satish Nadathur, Shreya Varshini, Sterling Hughes, Tanmay

Zargar, Truls Edvard Stokke, Tyler Graf, Xiaolong Xie, Xun Jiao, and Zitong Zeng
Meta Platforms

Abstract
The rapid growth of AI workloads at Meta has motivated our in-
house development of AI chips, aiming to significantly reduce the
total cost of ownership and mitigate risks posed by unpredictable
GPU supplies. At ISCA’23, we presented Meta’s first-generation
AI chip, MTIA 1. This paper describes its successor, MTIA 2i, now
deployed at scale and serving billions of users. MTIA 2i signifi-
cantly improves upon MTIA 1, reducing total cost of ownership by
44% compared to GPUs while delivering competitive performance
per watt. A key differentiator is its memory hierarchy: instead of
costly HBM, it uses large SRAM alongside LPDDR. Although there
has been a proliferation of publications on AI chips, they often
focus on architectural design and overlook three critical aspects:
(1) co-designing and optimizingMLmodels to work effectively with
the AI chip; (2) demonstrating sufficient flexibility to support a wide
range of models; and (3) during the productionization process, ad-
dressing challenges unanticipated or decisions deferred at design
time, such as dealing with memory errors, safe overclocking, re-
ducing provisioned power, and implementing real-time firmware
updates to mitigate silicon design defects. A key contribution of
this paper is sharing our experience with these aspects, based on
our journey of productionizing MTIA 2i at scale.

CCS Concepts
•Computer systems organization→ Special purpose systems;
Parallel architectures; Systolic arrays; • Hardware→ Application
specific integrated circuits; Fault tolerance; Power and energy; • Gen-
eral and reference → Performance; Empirical studies; Design.

Keywords
Accelerators, Artificial intelligence, Inference, Machine learning,
Memory hierarchy, Productionization, Deep learning recommenda-
tion models, Total Cost of Ownership

Please use nonacm option or ACM Engage class to enable CC licenses
This work is licensed under a Creative Commons Attribution 4.0 International License.
ISCA ’25, June 21–25, 2025, Tokyo, Japan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1261-6/2025/06
https://doi.org/10.1145/3695053.3731409

1 Introduction
AI workloads have been growing rapidly across the industry. At
Meta, our products, such as Facebook, Instagram, and Threads, criti-
cally depend on deep learning recommendationmodels (DLRM) [22]
to deliver personalized content to users, including advertisements,
short videos, and friend posts. Additionally, Llama-based genera-
tive AI powers various product features, such as image and text
generation for advertisers [2, 3].

The rapid growth of Meta’s AI workloads has motivated our
in-house development of AI chips. Previously, we presented Meta’s
first-generation experimental AI chip, MTIA 1 [10]. This paper
describes its successor, MTIA 2i, now deployed at scale and serv-
ing billions of users. Among Meta’s four major categories of AI
workloads—combinations of training or inference for generative AI
or recommendation models—MTIA 2i is optimized for inference for
recommendation models, which currently represent the majority
of inference workloads at Meta.

MTIA 2i has two major goals: (1) significantly lowering total cost
of ownership (TCO) compared to GPUs, and (2) offering sufficient
flexibility to support a wide range of production models. While
ensuring flexibility, our goal is not to stretch MTIA 2i to accommo-
date every model at Meta, as doing so could move it away from its
optimal design point. For models not supported by MTIA 2i, we
can still leverage GPUs available on the market.

We have successfully achieved both goals. For the models we
have launched into production, MTIA 2i reduces the TCO by an
average of 44% compared to GPUs. Additionally, the flexibility of
MTIA 2i is evident in its support for Meta’s latest models, such
as DHEN [30] and HSTU [28]. Developed after MTIA 2i’s design
freeze, these models exhibit significantly greater complexity than
traditional DLRM models [22].

Without delving into details, we summarize several notable as-
pects of MTIA 2i. First, MTIA 2i features a unique memory hierar-
chy, incorporating a large amount of SRAM and utilizing LPDDR
DRAM instead of HBM. Second, it provides hardware support for
PyTorch’s eager mode, enabling job launches in less than 1 µs. In
contrast, most non-GPU AI chips lack eager mode support and

1Contributions: Joel and Chunqiang drafted the paper. The other authors made major
contributions to developing the MTIA 2i features highlighted in the paper. MTIA 2i is
a large effort, with many aspects not covered in this paper due to space constraints.
We are grateful to the hundreds of contributors who made MTIA 2i possible.
2This work was done while Amin and Jongsoo were at Meta.

1

https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3695053.3731409

Model Type Description Model Size Model Complexity
Retrieval Rank initial 1M candidates. 50-100 GB 0.001 - 0.01 GFLOPS/sample
Early stage ranking Rank 10K candidates. 100-300 GB 0.01 - 0.1 GFLOPS/sample
Late stage ranking Final ranking of top 100 candidates. 100-300 GB 0.2 - 2 GFLOPS/sample
HSTU retrieval Rank initial hundreds of Ms candidates. 1TB 10 GFLOPS/request
HSTU ranking Similar to ranking above. 2TB 80 GFLOPS/request

Table 1: Examples of some production models at Meta. Note
that 90% of model size is embeddings.
rely on statically compiled graphs, which limits flexibility. Third,
while MTIA 2i was designed as an efficient, low-power, small form-
factor accelerator, its system-level performance rivals that of GPU-
based systems. Specifically, our MTIA 2i-based production server,
equipped with 24 MTIA 2i chips, achieves total performance com-
parable to that of our GPU-based production server equipped with
eight GPUs. Finally, compared to its predecessor, MTIA 1 [10],
MTIA 2i delivers more than 3x peak FLOPS, over 3x SRAM band-
width, greater than 3x network-on-chip bandwidth, 2x DRAM ca-
pacity, and approximately 1.4x DRAM bandwidth.

When exploring other AI chips for comparison with MTIA 2i,
we observe that the trend of developing in-house AI chips has
gained significant momentum among major IT companies, includ-
ing Google [15], Amazon [11], Huawei [18], IBM [19], Microsoft [1],
and Alibaba [14]. Additionally, many startups, such as Cerebras [20],
Groq [5], and SambaNova [23], offer their AI chips as alternatives
to GPUs from established vendors [8, 16, 24].

Each of these AI chips adopts a design point tailored to its target
workloads and makes distinctive architectural choices. For instance,
Cerebras andGroq forego DRAMandHBM, relying solely on SRAM,
while SambaNova employs reconfigurable dataflow. Rather than
focusing the comparison solely on these architectural differences,
our experience of productionizing MTIA 2i has taught us that the
success of an AI chip crucially depends on several aspects beyond
architectural design: (1) co-designing and optimizing ML models
to work effectively with the AI chip; (2) demonstrating sufficient
flexibility to support a wide range of models; and (3) during the pro-
ductionization process, addressing challenges unanticipated or de-
cisions deferred at design time, such as dealing with memory errors,
safe overclocking, reducing provisioned power, and implementing
real-time firmware updates to mitigate silicon design defects.

Despite the proliferation of publications on AI chips [1, 5, 8, 11,
14–20, 23, 24], prior works often focus on architectural design while
overlooking these critical aspects. Therefore, a key contribution of
this paper is sharing our experience with these aspects, based on
our journey of productionizing MTIA 2i at scale.

The remainder of the paper is organized as follows. Section 2
summarizes Meta’s recommendation models. Section 3 provides
an overview of MTIA 2i. Section 4 discusses our experience co-
designing and optimizing models for MTIA 2i. Section 5 shares our
experience productionizing MTIA 2i at scale. Section 6 presents a
case study on porting one of Meta’s critical models to MTIA 2i, and
section 7 shows results for MTIA 2i across a range of models in pro-
duction. Section 8 discusses some of the limitations and challenges
with MTIA 2i. Finally, Section 9 concludes the paper.

2 Production Models
Before the rise of Transformer-based models, Deep Learning Rec-
ommendation Models (DLRMs) were, and remain, a dominant ML
workload at Meta. Their canonical architecture includes embed-
dings for sparse features (e.g., categorical inputs like post IDs), a

multilayer perceptron (MLP), also known as a Fully Connected
(FC) network, for dense features (e.g., continuous values like ages),
and a final MLP to process interactions between sparse and dense
components. Recently, some recommendation models have adopted
Transformer-like architectures to capture sequence information, sig-
nificantly increasing complexity and parameter size. These trends
have guided our co-design of models and MTIA 2i. Table 1 summa-
rizes some of our current models. We explain each model below.
Retrieval: Retrieval models, positioned at the front of the recom-
mendation funnel, process millions of candidates to narrow the
list to 10K–100K, which are then passed to early-stage ranking.
Retrieval models are low complexity and must operate at very large
batch sizes to maintain efficiency, and they can spend a significant
amount of time on feature preprocessing. Communication between
CPU and accelerator and front end network can become bottle-
necks. Also, unlike early and late stage models, retrieval requires
processing both the user embeddings and ad embeddings on the
same host machine, so this puts pressure on host DRAM, device
DRAM, or both.
Early-stage ranking: Early-stage models further refine thousands
of candidates passed from the retrieval phase, selecting only hun-
dreds for final ranking in the late stage. Some preprocessing of ad
embeddings is required but to a much lesser extent than retrieval.
Memory bandwidth tends to be the bottleneck due to the low com-
plexity and high batch sizes needed to saturate an accelerator.
Late-stage ranking: Late-stage models rank a few hundred can-
didates prepared by early-stage ranking and present the final top
results to users. Due to the importance of late-stage ranking, ef-
forts to improve model quality have led to increases in model
size and complexity. New architectures, such as DHEN [30] and
Wukong [29], show continued improvements in model quality with
greater computational power, reaching up to 2 GFLOPS per sam-
ple. DHEN’s hierarchical design enables high-order interactions,
converting FLOPS into model quality. Wukong extends DHEN by
scaling models across two orders of magnitude. With effective mod-
eling of high-order interactions, more sparse features enabled by
larger embedding tables improve model quality. However, signif-
icant diversity in complexity and size remains among late-stage
ranking models in production, with over 60x variation.
Transformer-like models for recommendation: There is an in-
creasing trend toward incorporating Transformer-like architectures
in recommendation models. For instance, HSTU [28], developed
at Meta, enhances prediction quality by processing user history
in a generative, sequential manner. HSTU employs ragged atten-
tion to effectively manage the skewed distribution of user history
sequences. Consequently, it requires jagged tensor support and
can specialize across varying sequence lengths. Techniques like
HSTU are sequence models working with large effective batch sizes
introducing a 10x–100x complexity increase per request compared
to the most demanding recommendation models. They also tend to
have much larger embeddings, which places significant demands
on memory capacity and bandwidth.

2

MTIA 2i MTIA 1
Technology TSMC 5nm TSMC 7nm
Frequency 1.35GHz 800MHz
Instances 2.35B gates, 103M flops 1.12B gates, 65M flops
Area 25.6mm x 16.4mm 19.3mm x 19.1mm

Package 50mm x 40mm 43mm x 43mm

Voltage 0.85V Dual rail: 0.67V (logic),
0.75V (memories)

TDP 85W (65W typical) 35W (25W typical)
Host connection 8x PCIe Gen5 (32 GB/s) 8x PCIe Gen4 (16 GB/s)

GEMM TOPS 354 TFLOPS/s (INT8) 102.4 TFLOPS/s (INT8)
177 TFLOPS/s (FP16/BF16) 51.2 TFLOPS/s (FP16)

GEMM TOPS (Sparsity) 708 TFLOPS/s (INT8) N/A
354 TFLOPS/s (FP16/BF16) N/A

SIMD TOPS
RISC-V

vector core
5.5 (INT8), 2.8 (FP16),

1.4 (BF16/FP32)
3.2 (INT8), 1.6 (FP16),

0.8 (FP32)
SIMD Engine 5.5 (INT8/FP16/BF16/FP32) 3.2 (INT8), 1.6 (FP16)

Memory capacity
Per-PE local memory 384 KB 128 KB

On-chip SRAM
shared across PEs 256 MB 128 MB

Off-chip LPDDR5 64-128 GB 32-64 GB

Memory bandwidth
Per-PE local memory 1 TB/s 0.4 TB/s

On-chip SRAM 2.7 TB/s 0.8 TB/s
Off-chip LPDDR5 204.8 GB/s 176 GB/s

Table 2: Specifications of MTIA 2i versus MTIA 1.

Figure 1: MTIA 2i’s overall architecture.

3 MTIA 2i Overview
This section provides an overview of MTIA 2i, focusing on its
differences from its predecessor, MTIA 1, while directing readers to
the MTIA 1 paper [10] for details on shared components. Additional
details on the MTIA 2i architecture can be found in [21].

3.1 MTIA 2i Architecture Overview
Table 2 compares the specifications of MTIA 2i and MTIA 1. While
MTIA 2i retains many features of MTIA 1, its design incorporates
significant enhancements that triple overall performance, with only
a 1.13x increase in silicon die area. Figure 1 shows the overall
architecture of MTIA 2i. It consists of an 8×8 array of processing
elements (PEs) connected via a custom network-on-chip.
Network-on-chip (NoC): The NoC connects, through crossbars
located on each side of the die, to a set of on-chip SRAMs shared

Fabric Interface (FI)

Command

Processor

Registers
Local

Memory

Memory

Layout Unit

(MLU)

Dot Product

Engine (DPE)

Reduction

Engine (RE)

SIMD Engine

(SE)

RISC-V

(scalar)

RISC-V

(vector)

Debug

Subsystem

Machine

Timer

Interrupt

Controller

PE Interconnect

Figure 2: Internal architecture of Processing Element (PE).

by the PEs and to off-chip memory controllers. It delivers 3.3x
the bandwidth compared to MTIA 1. It ensures high-speed, high-
bandwidth data transfer between the 64 PEs, the host, the Control
Core, and the memory subsystem. The NoC features a non-blocking
architecture, minimizing interference among different initiators.
To handle NoC congestion, flow control is enforced at the sources.
Leaky-bucket traffic shaping and packet fragmentation are used to
smooth traffic and prevent sudden bursts and congestion.
Host Interface: Compared to MTIA 1, MTIA 2i incorporates a
faster Host Interface, featuring PCIe, DMA, and a secure boot pro-
cessor. Moreover, MTIA 2i introduces a new host-to-accelerator de-
compression engine to enhance the effective bandwidth over PCIe.
Control Core: It is a RISC-V quad-core processor coordinating
operations across the 64 PEs.

3.2 Processing Element (PE)
Figure 2 shows the internal architecture of a PE. Each PE comprises
two RISC-V processor cores and their associated peripherals (on the
left), as well as a set of fixed-function units specialized for specific
computations or data movements (on the right).
Local Memory: Each PE includes 384 KB of fast Local Memory
(LS), representing a 3x increase over MTIA 1.
PE Interconnect: It provides connectivity among the RISC-V cores,
peripherals, Local Memory, and custom hardware blocks. Without
going through the PE Interconnect, the fixed-function units can
directly access data from Local Memory within the PE and can form
a coarse-grained pipeline, where data is passed from one unit to
the next for successive operations.
RISC-V Cores: Within a PE, the RISC-V cores execute the appli-
cation’s code and issue commands to the Command Processor to
offload computations to fixed-function units. One of the RISC-V
cores is augmented with the RISC-V vector extension (64B wide),
enabling it to execute in a Single-Instruction-Multiple-Data (SIMD)
fashion, providing an alternative to using the fixed-function units.

Execution on a PE follows an asynchronous dataflow model.
The programmer writes code for the RISC-V cores to generate a
series of custom instructions that execute on the fixed-function
units in a dataflow manner, with DMA transfers and computations
occurring as their dependencies are resolved. The RISC-V cores
properly implement the desired kernel to keep the fixed-function

3

units efficiently utilized.
Memory Layout Unit (MLU): It performs memory-layout trans-
formation such as transpose, concatenate, and reshape.
Dot Product Engine (DPE): It performs General Matrix Multi-
plication (GEMM) operations, which are often the most intensive
computations in kernels. It operates on two tensors. The first tensor
is read and cached in the DPE, while the second tensor is streamed
from Local Memory to perform the dot product using all the rows
of the first tensor. The DPE-to-Local Memory bandwidth is doubled
compared to MTIA 1. The DPE incorporates two 32 × 32B × 32
Multiply-Accumulate (MAC) tiles, providing a combined through-
put of 2.76 TFLOPS/s per PE with inputs in FP16/BF16 and output
in FP32. It also supports 2:4 sparsity for weights, which can deliver
an additional 2x throughput.
Reduction Engine (RE): It stores matrix multiplication results
as they are accumulated. A dedicated reduction network allows
the RE to receive and accumulate results, forward them to the next
neighboring PE, or transfer them to the SIMD Engine for further
computation, such as applying an activation function.
SIMD Engine (SE): It performs various operations on a vector,
including quantization and nonlinear functions. In addition to its
floating-point ALUs, which can receive data from the Reduction
Engine or read directly from Local Memory, it also contains a set
of lookup tables for approximating nonlinear functions. For vector
computation, MTIA 2i can utilize either the SIMD Engine or the
RISC-V vector extension with 64B vector registers, and the SIMD
Engine offers 2x and 4x higher throughput for FP16 and BF16/FP32,
respectively. As a result, MTIA 2i improves the FP16/BF16 GEMM
to FP32 SIMD ratio compared by MTIA 1 by decreasing it to 32:1,
providing more acceleration for non-GEMM operations.
Command Processor (CP): This custom logic orchestrates execu-
tion across the fixed-function units, handling dependency checking,
scheduling, and tracking of the RISC-V cores’ custom instructions.
It also arbitrates access to Local Memory between the RISC-V cores
and the fixed-function units. The CP provides the programmer with
an easy-to-use Circular Buffer (CB) abstraction from Local Memory,
while offloading the CB’s management and dependency tracking
to hardware.
Fabric Interface (FI): It acts as a DMA engine to transfer data in
and out of the PE’s Local Memory through the network-on-chip
(NoC), and to or from on-chip or off-chip memory. The FI-to-NoC
bandwidth is doubled compared to MTIA 1.

3.3 New Features in MTIA 2i
Building on our experience with MTIA 1 and projections of future
model trends, we introduced several new hardware features in
MTIA 2i, as described below.
Dynamic INT8 quantization: MTIA 2i supports dynamic INT8
quantization by leveraging the Reduction Engine to identify the
minimum and maximum values per batch, which are then used
to derive scaling factors for row-wise quantization. This approach
enables channel-wise symmetric dynamic INT8 quantization for
Fully Connected (FC) layers, minimizing the model quality gap
compared to FCs using FP16. However, effectively using this feature
in production has proven to be challenging, which will be discussed

further in Section 4.4.
Compression: MTIA 2i supports lossless Asymmetric Numeri-
cal System (ANS) compression for weights, achieving up to a 50%
compression ratio, thereby reducing the consumed memory space,
memory bandwidth, and network-on-chip bandwidth. However,
effectively leveraging this feature has been challenging, as our mod-
els have not widely adopted INT8 for weights and FP16 data does
not compress efficiently. Additionally, MTIA 2i supports GZIP com-
pression at rates up to 25 GB/s for PCIe communication between the
host and device, alleviating PCIe and network congestion. This sig-
nificantly benefits our early-stage retrieval models, which transfer
large volumes of data between host and device.
Sparsity: MTIA 2i supports 2:4 weight sparsity in the Dot Product
Engine, which could potentially double effective FLOPS. However,
our production experience indicates that exploiting sparsity is chal-
lenging due to potential quality loss in our recommendation models.
To be effective, sparsity must apply to the largest weight matrices,
which are often used in the most critical layers that impact model
quality. Many of our models lack sufficient sparsity in these matri-
ces, leading to accuracy degradation. Therefore, this feature is not
yet widely used in production.
Fast eager mode: To better support PyTorch’s eager mode, MTIA
2i provides hardware features that accelerate job launches. Eager
mode executes operations immediately as they are called, rather
than first compiling them into a static computation graph. We
support eager mode for several reasons. First, ML training often
requires eager mode, and with MTIA 2i supporting it, we can pro-
totype the software ecosystem for future training chips. Second,
many complex models in PyTorch cannot be fully compiled into a
static graph, necessitating eager mode support even for ML infer-
ence. Third, eager mode accelerates host-bound operations during
inference that may not fit into the graph mode, such as merge, re-
mote, or local networks. Fourth, it enables real-time weight updates,
improving model freshness.

To support eager mode, MTIA 2i includes several improvements
over MTIA 1. The Control Core is upgraded from an ARM CPU
with a single core to four cores. Additionally, the Control Core can
broadcast Work Queue (WQ) descriptors for eager mode jobs to
PEs, and the PEs are equipped with a Work Queue Engine (WQE)
to DMA WQ requests from the Control Core. These improvements
reduce PE job launch time by as much as 80%, launching jobs in
under 1 µs and replacing jobs in less than 0.5 µs.
Addressing bottlenecks in issuing instructions: With the in-
creased GEMM FLOPS and SIMD FLOPS in MTIA 2i, more powerful
custom instructions are required to fully utilize the computation
engines. This became evident in our initial kernel implementa-
tions, which did not utilize these advanced custom instructions
and were bottlenecked by the custom-instruction issue rate. Our
RISC-V scalar cores could not issue custom instructions fast enough,
resulting in lower out-of-the-box efficiency, particularly for smaller
GEMM shapes.

For GEMMs operations, we introduced new custom instructions
to support multiple contexts, which helps avoid unnecessarily dupli-
cating writes to custom registers. We also added an auto-increment
offset feature, which is crucial for issuing matrix multiplication in-
structions in a tight loop. When activations or weights are too large

4

to fit in SRAM, we leverage a prefetch feature added to DMA_IN
instructions, enabling data to be read directly from DRAM into the
SRAM in advance of loading it into the Local Memory. With these
enhancements, we can achieve >92% of peak FLOPS for GEMM
shapes such as 2K x 2K x 2K.

For sparse operators, particularly Table Batched Embedding
(TBE), we needed to increase the rate of DMA reads for embedding
rows from tables in memory and improve the rate of row-wise
accumulations requested from the SIMD Engine to avoid being
instruction-bound. We implemented a new version of our DMA_IN
instruction, which takes an index as input and automatically cal-
culates the address. Additionally, we added support for handling
unaligned addresses, which was absent in MTIA 1. For accumula-
tions in the SIMD Engine, we introduced a new instruction capable
of handling up to 128 rows, compared to the 32 rows previously sup-
ported, significantly reducing the number of instructions needed
for embedding pooling.

3.4 Server Design
We use the open-source Grand Teton [7] platform as the shared
server platform for both our MTIA 2i-based servers and GPU-based
servers, which helps reduce costs through platform reuse.

Each MTIA 2i server has two CPU sockets, each connected to
a PCIe switch that links to six accelerator modules. Each module
houses two MTIA 2i chips, connected via two 8x Gen5 PCIe links.
The PCIe bandwidth supports both host-to-device and peer-to-
peer (P2P) communication between modules. In total, each server
contains two CPUs and 24 MTIA 2i accelerators. Each CPU has
96 cores and is connected to 12 x 96GB DDR5 DRAM (totaling
1.15 TB per CPU), offering 460 GB/s of bandwidth. Additionally,
each CPU is equipped with 2 x 200Gbps Ethernet NICs. We treat
each CPU socket and its 12 attached MTIA 2i chips as a single
logical system. This configuration results in 8 CPU cores, 96 GB
of host DRAM with 38 GB/s bandwidth, and 4.17 GB/s Ethernet
bandwidth per accelerator. Our container management system [25]
allocates accelerators to ML models at the granularity of one or
more accelerators, along with the corresponding cores, DRAM, and
NIC bandwidth. The scheduling is NUMA-aware, ensuring that
sharded models are placed on one or more modules within the
same PCIe switch.

Densely packing 24 accelerators into one server helps amortize
the cost of non-accelerator components (e.g., CPU, DRAM, NIC,
and motherboard), but also introduces challenges. Although CPU
cores and PCIe bandwidth are sufficient, host DRAM bandwidth
becomes a bottleneck when running low-complexity models on
all 24 accelerators at the same time. Beyond resource-allocation
optimizations (e.g., NUMA-aware memory allocation, thread core
pinning, and transparent huge pages), we eliminate unnecessary
memory copies of input tensor data and offload certain cast opera-
tions to the accelerator, halving data transfer by converting FP32
to FP16. Additionally, we implement a userspace driver for MTIA
2i, streamlining software releases and improving the predictability
of multi-instance serving.

3.5 Software Stack: Evolving with PyTorch
At Meta, the ML software stack is centered around PyTorch, provid-
ing consistent support for GPU, CPU, and MTIA to ensure a unified

Application Layer

PyTorch

TorchInductor

MTIA Triton Compiler

TorchDynamo & torch.export

MTIATensor, Device Memory
Allocator, Device APIs

MTIA Operators

Triton C++

MTIA Streaming Interface
MTIA Firmware Driver

MTIA Firmware

Ke
rn

el
C

om
pi

le
r

Runtime for MTIA
Compiled Subgraph

Runtime for MTIA
Eager Operator

MTIA Graph Compiler

Host
MTIA Accelerator

Figure 3: MTIA software stack.

development experience across hardware platforms. Unlike many
AI chips that rely on static computation graphs and are incompati-
ble with PyTorch’s eager mode, MTIA adopts a PyTorch-first design,
offering proper support for eager mode and seamless integration
with PyTorch. Figure 3 provides a high-level overview of MTIA’s
software stack. For further details, see theMTIA 1 paper [10]. Below,
we briefly summarize the software stack’s evolution since MTIA 1.

FromMTIA 1 toMTIA 2i, the software stack has evolved from Py-
Torch with the FX compiler to PyTorch 2.0 [6] with TorchDynamo,
TorchInductor, and Triton [26]. TorchDynamo enables symbolic
tracing to capture models with dynamic shapes, while TorchInduc-
tor generates Triton code for PyTorch operators and automatically
detects operator patterns for fused operator generation. Triton of-
fers a uniform framework for writing custom kernels across MTIA,
GPU, and CPU. We have optimized Triton kernel compilation to ef-
ficiently utilize MTIA’s fixed-function units. Additionally, we added
eager mode support via the PyTorch runtime, which has proven
invaluable in both training and inference, as well as for debugging.

3.6 Discussion: Unique Memory Hierarchy
Compared to GPUs and other accelerators, the memory hierarchy
of MTIA 2i is unconventional. It uses a large SRAM (256 MB) backed
by LPDDR DRAM, avoiding HBM to reduce cost and power con-
sumption. The larger SRAM is chosen to meet the stringent latency
requirements of our recommendation models. Moreover, unlike
large Transformer models [27], these relatively smaller models ex-
hibit significant locality, allowing us to maximize data reuse in
SRAM. This design shares similarities with those of Cerebras [20]
and Groq [5], which rely exclusively on SRAM and omit DRAM
and HBM. However, MTIA 2i incorporates LPDDR DRAM to com-
plement the large SRAM, rather than eliminating DRAM entirely.

MTIA 2i’s SRAMprovides 2.7 TB/s of bandwidth, whereas LPDDR
offers just 204 GB/s—a 13x difference. Compared to MTIA 1, we
doubled the SRAM capacity and tripled its bandwidth, while in-
creasing DRAM bandwidth by only 1.4x. Each Processing Element
(PE) provides 3x Local Memory for DMAing input and output ten-
sor data to and from memory. We also doubled the bandwidth of
Local Memory to the Dot Product Engine (DPE) compared to MTIA
1. This is critical for feeding the DPE with sufficient data, as it
now contains two 32 x 32 MAC arrays, along with increased input

5

caches to accommodate the 2x larger effective tile size for matrix
multiplications.

Achieving high effective FLOPS in the DPE requires careful opti-
mization to keep the working set in SRAM. In particular, we need
to choose the right model batch size to strike a balance between
(1) keeping the batch size small enough for the activation buffer
to fit in SRAM and (2) increasing the batch size to enhance the
computational intensity and efficiency of GEMMs, which, in turn,
makes it easier to hide the latency of blocking weight tiles in SRAM
as they are read from DRAM.

Using LPDDR instead of HBM reduces costs but introduces lim-
itations that make MTIA 2i unsuitable for certain models. With
limited off-chip bandwidth, performance drops sharply as mod-
els reach a complexity and size that exceeds the SRAM capacity.
We believe that 2 GF/sample is unattainable for MTIA 2i because
GEMMs become DRAM bandwidth-bound, and the latency of dense
and sparse networks becomes prohibitive even at small batch sizes.
For example, running LLMs efficiently on MTIA 2i is challenging
due to limited LPDDR bandwidth. For the Llama2-7B model, our
evaluation shows that the prefill stage meets the time-to-first-token
requirement of 600ms, but the decode stage fails to generate each
additional token within the latency requirement of 60ms.

4 Model-Chip Co-design
Model-chip co-design is essential for the success of AI chips, yet it
is often overlooked in prior publications. This section highlights
our experience in co-designing models with MTIA 2i.

4.1 Autotuning Models
Optimizing each model requires carefully determining the configu-
ration of various hardware knobs that we introduced in MTIA 2i to
give us flexibility in handling model evolution over time. Given the
large number of unique models we have at Meta, hand-optimizing
each model obviously would not scale. Therefore, we have built an
autotuning framework to pick optimal hyperparameters for both
the hardware and the model.
Data placement: The placement of data in SRAM or DRAM has a
significant impact on performance. The 256MB global SRAM shared
across PEs is partitioned, at a granularity of 32MB, regions into
hardware-managed cache (LLC) and software-managed scratch
memory (LLS), with data in LLS not being automatically evicted by
hardware. The autotuning framework automatically sizes the LLS
and LLC using a simple approach: configure the LLS to hold the
entire activation buffer and use the remaining SRAM for LLC.When
the activation buffer is too large to fit, compare the performance of
the nearest lower batch size where activations do fit in LLS with
the current batch size with activations in LLC and pick the winner.

This works well in practice for the following reasons. The acti-
vation buffer is reused throughout model execution, i.e. the same
memory can be used to back multiple activation tensors whose
lifetimes do not overlap. But inputs, outputs, and weights on the
other hand have a limited lifetime, often for a small number of oper-
ations, and therefore tend to waste LLS space because the capacity
is unused during the rest of model execution. Also, the eviction of
data in the activation buffer would trigger a writeback to DRAM
which slows down execution whereas weights, being constant, can

be evicted from LLC without a writeback. We are exploring algo-
rithms for fine-grained data placement tuning improve those cases
when the activation buffer does not fit in LLS.
Kernel tuning: Kernel tuning is one of the most important opti-
mizations because different variants of a kernel can optimize for
specific inputs with certain shapes, tensor data placement (SRAM
versus DRAM), and data types. We built a kernel generator for Fully
Connected (FC) layers to customize kernel variants based on input,
output, and weight stationary. These kernel variants can adjust
block sizes, DMA scheduling, and the usage of circular buffers. Ini-
tially, we ran exhaustive tests to cover all FC shapes in a model with
different data placements, which proved to be too time-consuming.
Consequently, we created a performance database and used approx-
imate nearest neighbor search to pick FC kernel variants, which
reduced FC tuning time by up to 1000x while achieving kernel
performance within 5% of exhaustive FC tuning.
Batch size: To autotune a model’s batch size, we build multiple
snapshots of the model with different batch sizes and select the best
performing one using traffic-replay tests.
Request coalescing: To autotune request coalescing, we run exper-
iments to identify the optimal time window for coalescing requests
and the number of windows that can be supported in parallel. We
found that a model’s throughput at its P99 latency SLO is highly sen-
sitive to these parameters. With effective autotuning, we typically
achieve >95% requests per batch.
Model sharding: To determinemodel sharding, wemeasurewhether
a model and its runtime buffers exceed the size of DRAM for a single
device. If so, autotuning automatically explores how to shard the
model across multiple devices.
Summary: We have successfully used autotuning to completely
optimize models launched to production, with performance per
total cost of ownership (Perf/TCO) and performance per unit of
power consumption (Perf/Watt) matching or exceeding those of
prior models that were manually optimized. We expect to autotune
more parameters as new optimization techniques are developed.

4.2 Exploit Locality Across the Stack
Given MTIA 2i’s large SRAM alongside LPDDR DRAM without
HBM, optimizing for locality is expected. However, what’s sur-
prising is the extent of locality we can exploit, even with sparse
networks [22] (i.e., embedding table lookups) in recommendation
models that have irregular memory accesses across large tables.
As models scale, sparse networks take up a smaller fraction of the
overall execution time, and caching allows us to keep 40-60% of
their accesses in SRAM. For dense networks, we can achieve over a
95% SRAM hit rate, thanks to optimizations such as buffer place-
ment, graph optimizations (including fusion to reduce working set
size), and an extra tiling level in the LLC for GEMM kernels.

Autotuning partitions the SRAM between LLS and LLC to maxi-
mize the SRAM hit rate. Additionally, we maximize data reuse by
selecting the best operator scheduling algorithm for a model to
minimize the liveness range required for activations. As a result,
the LLC is primarily used for loading weights for FCs, minimizing
performance loss from evicting dirty data. In cases where activa-
tions cannot fit entirely in LLS, we rely on memory hints supported
by the hardware to skip the write-back to DRAM when we know

6

the tensor data will not be reused.
Graph optimizations, including fusions, were the most effective

way to reduce activation buffer size. Fusions moved much of a
sub-graph’s working set into the distributed Local Memory of the
PE grid by combining back-to-back (vertical), parallel (horizontal),
or other operator combinations that would otherwise load and
store inputs and outputs from LLS/LLC. One example is the sibling
transpose FC fusion, where a transposed output is used as input for
multiple FC layers; fusing these improved cache locality, resulting
in up to a 15% performance gain for some models. We also observed
that inputs with a low batch size, which had to be broadcasted to the
model batch size, caused extra runtime and duplicated activation
data. We modified the model publish flow to delay this broadcast,
reducing the memory footprint of some models by up to 2x.

As recommendation models grew more complex, GEMMs with
large weight tensors became a bottleneck on MTIA 2i, often DRAM
bandwidth-bound. Increasing batch size to make them compute-
bound was not viable, as it increased the live range of activations
and risked overflowing SRAM. While we achieved 93% or higher
efficiency for compute-bound models with tensors fitting in SRAM,
more complex models shifted the challenge to saturating DRAM
bandwidth. We found that activations typically fit in the distributed
Local Memory of the PEs, so we implemented an algorithm to
pre-load activations from LLS and broadcast weights across PE
columns. This decoupled activation and weight loading, reducing
PE contention. By leveraging hardware broadcast read support,
we eliminated contention in the network-on-chip when reading
weights. We also prefetched weight tiles into LLC to hide DRAM
read latency. This approach improved latency by 45% and achieved
over 95% DRAM bandwidth for shapes like 512 x 26592 x 2048 with a
109MB weight tensor. For larger batch sizes, where activations may
not fit in LLS, we added an extra tiling level on the first dimension
and prefetched activations as well.

4.3 Keeping Up with Model Evolution
As MTIA 2i was being developed based on the initial requirements,
the field of AI evolved rapidly, introducing new modeling tech-
niques such as sequence embeddings and HSTU [28]. These ad-
vancements presented challenging new kernels and shapes which
were not always a natural fit for MTIA 2i’s SIMD Engine, given its
somewhat limited ISA. While GPUs could more easily address these
challenges using their general-purpose Single-Instruction-Multiple-
Threads (SIMT) cores, we found that MTIA 2i’s heterogeneous PE
architecture offered sufficient flexibility to handle these evolving
workloads by utilizing the RISC-V vector core and employing cre-
ative approaches to use the SIMD Engine.

Sequence embeddings require jagged tensor [4], where each
consecutive row may have a different length. Unlike pooled embed-
dings, which are dense with shape T x B x D (where T is the number
of tables, B is the batch size, and D is the embedding dimension),
sequence embedding lookup results are inputs to more complex
compute operations rather than simple pooling. These complex
operations include linear transformations, Hadamard products, or
those found in Transformer. A variety of jagged tensor operators
are needed, particularly for converting between sparse and dense
formats and performing mathematical operations on jagged tensors.
Using the SIMD Engine would be cumbersome, while the RISC-V

vector core offers more flexibility given its shorter vector length and
data-level parallelism of jagged tensor ops is more limited compared
to dense operators.

Another model evolution requiring support is HSTU [28], which
relies on a fused ragged attention operator. While quite similar
to the multi-headed attention used in Transformer, it relies on a
bias calculated from positional weights and timestamps. This bias
calculation involves table index computations, which are then used
to gather entries from these tables. Both steps can be parallelized
with vector instructions. Additionally, we repurposed the lookup
table (LUT) support in the SIMD Engine for the gather operation
by performing it piecewise, loading each segment of the weights
and timestamp tables into the limited LUT memory.

Finally, we faced challenges in handling LayerNorm and SoftMax
as we onboarded new models with different shapes. LayerNorm
requires three distinct steps to process the data: row-wise mean,
row-wise variance, and element-wise result. This process involves
a mixture of fixed-function commands and RISC-V vector instruc-
tions, balanced across the two cores in the PE. SoftMax was even
more challenging because it involves five distinct steps, requiring
careful pipelining across the RISC-V scalar and vector cores to bal-
ance data fetch and computation from the DMA engine, as well
as between the SIMD Engine and vector instructions. Additional
steps were needed to transpose the input when the inner dimension
was small, ensuring full throughput for SIMD computation. While
a simple, low-performance implementation of these kernels was
relatively straightforward, the various acceleration engines in the
PE enabled much higher performance with an efficient pipelined
computation.

4.4 Limited Use of Quantization in Production
Despite the potential efficiency gains from quantization, FP16 re-
mains the preferred choice for most of our recommendation mod-
els, even though MTIA 2i supports dynamic INT8 quantization.
Dynamic INT8 quantization computes activation parameters on-
the-fly, while static INT8 quantization uses fixed parameters from
offline calibration. As a result, dynamic quantization adapts to differ-
ent inputs and achieves better accuracy. MTIA 2i supports dynamic
quantization parameter computation, with the reduction engine
(RE) outputting min and max values per row after Matmul compu-
tation, and the SIMD engine computing row-wise quantization.

We evaluated per-tensor quantization, per-batch-item quantiza-
tion (i.e., row-wise quantization with M as the batch dimension),
and per-N batch-item quantization. We found that row-wise quan-
tization of activations, combined with static INT8 quantization
of weights, achieves model quality comparable to FP16. However,
while the DPE performs 2x faster with INT8 compared to FP16, the
overhead of quantization and dequantization for FC layers using
this feature reduces the speedup to around 1.6x for large, compute-
bound shapes (e.g., 2048 x 2048 x 2048).

Given the significant model development effort required, quan-
tization is best suited for high-usage models deployed on many
accelerators where efficiency gains are critical. For low-usage mod-
els, the effort may not be justified. As models grow in complexity,
achieving a significant end-to-end performance gain with dynamic
quantization becomes challenging. Additionally, layers closest to

7

the input and output of the dense compute network have the great-
est impact on model accuracy and are therefore sensitive to quanti-
zation. Typically, only a few large layers show performance gains
due to quantization, and even then, end-to-end improvements are
often marginal (a few percent), unless layers causing quality degra-
dation are quantized for more substantial gains (>5%). In practice,
quantizing only the largest FC layers to amortize the overhead is
most effective.

Despite these challenges, opportunities exist to increase quanti-
zation adoption by automating the process, including model quality
analysis, and by enhancing future MTIA chip generations to sup-
port larger, more complex models with bigger FC layers that would
benefit more from quantization.

5 Productionization Experience at Scale
During the productionization process of an AI chip, addressing chal-
lenges that were unanticipated or decisions deferred at the design
stage due to ambiguity is critical for the chip’s success. However,
productionization experience is often overlooked in prior publica-
tions. This section shares our lessons learned from productionizing
MTIA 2i at scale.

5.1 Trade-offs in Handling Memory Errors
We designed MTIA 2i as an efficient, low-power, small form-factor
accelerator, opting for LPDDR DRAM, which lacks built-in support
for Error-Correcting Code (ECC). As a result, ECC must be com-
puted by the memory controller rather than at the memory itself.
During the design phase, due to the lack of large-scale production
data on LPDDR DRAM’s error rate, we were uncertain whether
to enable the controller-based, inefficient ECC in production. An
alternative was to operate without ECC and address occasional
memory errors through other means, given that inference results
are inherently statistical. To make an informed decision, we adopted
a multi-pronged approach to assess the impact of forgoing ECC.

First, as we scaled up the deployment of MTIA 2i in our data-
centers, we collected memory error data at scale. From an initial
sample of 1,700 servers, we found that 24% exhibited ECC errors,
typically on a single MTIA card per server. This error rate was too
high, and we lacked an efficient way to reliably detect them.

Second, we developed a memory error injection tool to identify
which parts of a model (e.g., weights, activations, inputs, or outputs)
aremost sensitive to errors and how tomitigate them.We found that
bit flips in Table Batched Embedding (TBE) indices, TBE table rows,
or specific bits in floating-point representations of dense weights
can cause NaNs or output corruptions, with some failures occurring
with high probability. We considered using region-based ECC to
protect these memory regions while leaving others unprotected,
but it proved to be a difficult trade-off between performance and
protection. We also prototyped software-based memory integrity
checking, such as using hashing to detect corruptions, but found
the overhead too high.

Third, we evaluated whether the software products using MTIA
2i could simply absorb the negative impact of memory errors, since
the result of inference is inherently statistical. Through collabora-
tion with the product teams, we learned that while the software
products have mechanisms to detect product-level anomalies, such

as a drop in advertisement revenue due to incorrect ranking outputs,
the high volume of memory errors would overwhelm the operators,
especially given the high risk of revenue or user engagement loss.

Ultimately, we concluded that enabling ECC is necessary for
production-scale operation, despite the 10-15% throughput penalty
associated with the inefficient memory-controller-based ECC. How-
ever, evenwith this penalty,MTIA 2i still delivers significant Perf/TCO
gains over GPUs. All reported numbers in this paper already ac-
count for this penalty.

5.2 Overclocking at Scale
To further optimize MTIA 2i, we evaluated overclocking the chip to
improve performance. The evaluation results led to an increase in
the chip’s operating frequency from the initial design specification
of 1.1GHz to 1.35GHz. This increase surpassed our expectations,
indicating sufficient frequency safety margins in the chip’s design
and manufacturing. With this 23% frequency increase, we observed
end-to-end throughput improvements ranging between 5% and 20%
in offline replayer tests for the models we evaluated. Overall, our
experience highlights the importance of conducting a detailed over-
clocking study pre-production to maximize performance, despite
careful consideration of clock frequency during the design phase.

Concretely, to assess the impact of overclocking, we conducted
a large-scale study on the correlation between clock frequency,
performance, and reliability, involving approximately 3,000 chips.
For each chip, we conducted 10 tests, including performance tests,
power tests, memory tests, kernel tests, module manufacturing
tests, and functional PCIe tests, with each test focusing on specific
aspects of chip functionality and performance. We compared the
test results at three different frequencies (1.1GHz, 1.25GHz, and
1.35GHz) and observed negligible decreases in the test pass rate as
the frequency increased from 1.1GHz to 1.35GHz. In production,
we ensure stability through continuous monitoring at every stage,
from manufacturing runs to deployment across the fleet.

5.3 Reducing Provisioned Power
When deploying new hardware, we initially set the rack power
budget based on stress test and application load testing results at a
small scale. We then adjust the budget as we gain experience from
large-scale deployment. ForMTIA 2i, after six months in production,
we reduced the rack power budget by nearly 40% compared to initial
estimates—a significantly larger reduction than with previously
deployed mature hardware.

We attribute this higher-than-usual reduction to two factors.
First, the initial power estimates were based on out-of-the-box
models unoptimized for MTIA 2i. Second, the smaller chip size and
more chips per server allowed for more granular resource allocation
while maintaining adequate buffers for load spikes, reducing the
likelihood of power capping due to overdraw.

After gaining sufficient production, we derived the new power
budget using power data from the two largest and most demanding
models. In one experiment, each of the 24 accelerators in a server
was subjected to the P90 of peak throughput that the accelerators
handled for these models in production. The likelihood of all 24
accelerators in a server simultaneously running the largest model
and handling P90 peak traffic is very low. In another analysis, we
determined the P90 power consumption of fully utilized servers

8

in production. The higher value from the experiment and analysis
was selected as the new rack power budget. Although this approach
led to a drastic reduction in the rack power budget by 40%, it has
proven robust in production.

5.4 Advantages of Smaller Chips for Inference
Meta’s recommendation models vary widely in size and complexity,
resulting in differing demands for FLOPS, memory bandwidth, and
I/O bandwidth. Some small models require only 10M FLOPS/sample
and several GB of device memory, while large models demand over
1G FLOPS/sample and up to 100 GB of memory.

In the AI chip industry, there is a common belief that “bigger is
better,” with expectations for increasingly powerful devices each
year to handle the latest models with ever-growing demands. How-
ever, we find that while the largest devices can support all of our
models, they are not the most efficient. Smaller chips, with lower
power consumption and peak FLOPS, provide distinct advantages,
offering greater versatility across the range of models we serve and
enabling higher device utilization.

When designing MTIA 2i, we did not expect it to handle the most
complex or largest models, given its small device size. We antici-
pated that beyond a certain level of model complexity, meeting the
P99 latency requirements for production serving while maintain-
ing a sufficiently large batch size for reasonable throughput would
become infeasible. However, throughout the process of launching
models on MTIA 2i, we were pleasantly surprised to find that it
could handle more complex models than initially expected. This
was made possible by exploiting data locality to effectively leverage
the large SRAM, which significantly boosts effective FLOPS.

Even more surprisingly, we found that MTIA 2i delivered signif-
icant efficiency gains compared to our GPU platform. Our testing
showed an additional gain of 5% to 90% in Perf/TCO and Perf/Watt
in production compared to offline traffic replay. In addition to MTIA
2i’s inherent efficiency, the highly variable user load in production is
also a factor in these gains. As a result, we must reserve substantial
buffer capacity for peak demand, often leading to underutilization of
devices. Larger, underutilized devices result in greater inefficiencies
and waste, thus favoring smaller devices.

5.5 Real-time Firmware Updates for Mitigating
Silicon Issues

An advantage of developing an AI chip in-house is the ability to
frequently update firmware, drivers, and runtime libraries to en-
hance performance. Collectively termed the firmware bundle, these
low-level software components are deployed atomically to ensure
consistency and version compatibility. Furthermore, updates can
be deployed immediately to address production issues caused by
silicon design flaws—a task that is challenging with third-party
silicon. The following example illustrates this.

In 2024, we enhanced the MTIA 2i stress test suite and found that
when PE utilization was driven to 100% under certain conditions,
approximately 1% of the servers under test experienced a loss of
PCIe connectivity to the MTIA 2i chip. Further investigation re-
vealed that about 0.1% of production servers serving certain models
encountered a similar issue under high load. A detailed analysis
identified the root cause as a subtle deadlock involving multiple

components: the Control Core, the network-on-chip (NoC), and
the host. Specifically, when the Control Core issued a request to
read host memory under certain conditions, and the PCIe controller
already had a queue of transactions in flight, PCIe transaction or-
dering rules required the response to the Control Core’s request to
wait for earlier transactions to complete. However, those transac-
tions faced back-pressure blocking from the NoC, which serialized
certain transactions and waited for the Control Core to complete an
operation. Meanwhile, the Control Core was waiting for the host to
complete the memory read transaction, resulting in a deadlock. To
mitigate the issue, we deployed a firmware update that relocated the
specific memory required by the Control Core from host memory to
the device’s SRAM. This quick change eliminated the need for the
Control Core to access host memory under the specific condition,
effectively preventing the deadlock. In contrast, debugging silicon
reliability issues and implementing firmware mitigations typically
take much longer with third-party GPUs.

In addition to instant firmware-bundle updates for production
issues, we use Meta’s continuous deployment tool [12] to regularly
test and deploy firmware across the fleet. The tool builds firmware
three times daily and subjects each build to stress testing on Meta’s
testing platform [9], where the issue described above was automat-
ically detected. Not all builds are deployed to production. A typical
rollout takes 18 days, starting in the staging environment and grad-
ually scaling to the entire fleet. During this process, our cluster
manager [25] enforces product team policies on server restarts to
maintain service health. This incremental approach helps identify
subtle issues, such as the 0.1% server impact noted earlier, while
minimizing fleetwide disruptions. In emergencies, updates can be
deployed fleetwide within three hours, adhering to safety policies
to limit simultaneous server restarts. In extreme cases, the entire
fleet can be updated within one hour by overriding these policies.

In 2024, we deployed 23 firmware-bundle releases fleet-wide,
enabling timely production enhancements. In contrast, we were
only able to deploy one or two firmware updates for third-party
GPUs each year.

5.6 Large-Scale A/B Testing in Live Production
To establish MTIA 2i as a viable alternative to GPUs, we evaluated
model quality and runtime efficiency at scale in live production.
We developed an inference software stack that can serve the same
model on either MTIA 2i or GPUs, flexibly shifting live production
traffic and systematically comparing their results. This capabil-
ity also enables incremental replacement of GPUs with MTIA 2i
without disrupting production. Below are the details.

During post-training processing, our automation pipeline applies
inference-optimized transformations, some accelerator-specific, to
the same trained model to ensure an apples-to-apples comparison,
generating runtime models suitable for serving on MTIA 2i and
GPUs. During online serving, we split user traffic between MTIA 2i
and GPUs in a controlled manner for fair A/B testing. For example,
both MTIA 2i and GPUs are deployed globally within the same
datacenter regions, ensuring they receive comparable user requests.
We compare results holistically, including business metrics (e.g.,
ads revenue), system-level metrics (e.g., latency, throughput, error
rate), high-level model metrics (e.g., normalized entropy [13] for
evaluating prediction accuracy), and low-level model metrics (e.g.,

9

M
T

IA
 P

er
f/

T
C

O
 R

el
at

iv
e

to
 G

P
U

 B
as

el
in

e

1/1/2024 3/1/2024 5/1/2024 7/1/2024
0

0.5

1.0

1.5

2.0

Figure 4: Continuous optimization improves MTIA 2i’s
Perf/TCO for a key ranking model used at Meta. The lines
represent various variants of the model.

numerical accuracy and prediction value distributions).
Overall, these rigorous A/B tests in live production have con-

firmed thatMTIA 2imeets SLOs, achieves comparablemodel quality,
and significantly reduces Perf/TCO.

6 Case Study: Porting a Model to MTIA 2i
Existing models are primarily optimized for GPUs. Naturally, their
performance on new accelerators may initially be inferior due to a
lack of optimization. Our experience demonstrates that the success
of an accelerator critically depends on optimizing and co-designing
models to fully leverage its hardware features. In this section, we
share our journey of improving a key model’s Perf/TCO from an
initially inferior 50% to a final, superior 180% compared to the GPU
baseline, while achieving 2% higher Perf/Watt, as shown in Figure 4.

This model is among the top five recommendation models at
Meta, responsible for generating a significant percentage of Meta’s
advertisement revenue. It is deployed across Meta’s global datacen-
ter regions and must meet strict latency requirements. Given the
risks of negatively impacting advertisement revenue, launching this
model required not only improvements in Perf/Watt and Perf/TCO
compared to the GPU baseline but also high software reliability
and stability in model quality.

Due to the model’s significance for Meta, many ML engineers
continuously fine-tune the model structure and features to enhance
ranking quality. As a result, the model evolved significantly over
the eight-month period from its initial test on MTIA 2i to its fi-
nal production launch. During this process, the model’s complex-
ity increased from 140 MFLOPS/sample to 940 MFLOPS/sample
and incorporated new modeling techniques, such as a network
of multi-headed attention (MHA) blocks like those in traditional
transformers [27]. It requires tens of gigabytes for the embedding
tables, necessitating sharding across two accelerators. The model
architecture is based on DHEN [30]; it contains stacked layers with
skip connection and layer normalization where each layer con-
tains an ensemble of a Factorization Machine Block and a Linear
Compression Block [29].

Multiple co-design optimizations helped improve the model’s
Perf/TCO. First, we identified that certain graph patterns in the
model can be transformed into more efficient sub-graphs or fused
into a single kernel to best leverage MTIA 2i’s hardware. For ex-
ample, we fused multiple parallel FC layers along with a common
input transpose into a single operator, which shrunk the activation

L
at

en
cy

 (
u
s)

Throughput (queries per second)

Latency SLO

Figure 5: Consolidating TBE instances leads to significant
throughput improvement.
size and improved the cache hit rate. We also identified hundreds
of LayerNorm layers that can be batched together horizontally to
amortize the kernel launch overhead. In the MHA blocks, we re-
placed a sequence of operators (i.e., Slice, Reshape, Concat) with a
single custom Transpose kernel on MTIA 2i. Finally, we reduced the
merge network latency by 50% by selecting the FC kernel variant
most optimized for each shape, especially for some of the largest FCs
with weight tensors which required an additional level of blocking
by prefetching into SRAM.

Second, we rejectedmodel changes that would undermine SRAM’s
effectiveness and identified an alternative that achieves similar re-
sults while being more SRAM-friendly. The initial change, which
would have tripled the remote embedding inputs to the merge
network, caused a 90% drop in throughput because the increased
activation buffer size could no longer be pinned in SRAM and had
to be fetched from LPDDR. We achieved similar improvements in
model quality by adding two DHEN layers to deepen the computa-
tional portion of the merge network. These additional layers were
small enough to keep the activations pinned in SRAM.

Third, we performed a model transformation to better accom-
modate a new model change. We had previously developed an
optimization called In-Batch Broadcast (IBB) that broadcasts (i.e.,
expands) the user-side inputs to the merge network, aligning user-
ad pairs for the interaction and prediction layers. However, due to
a new model change, the early stage of the merge network now
requires only the user-side inputs. Accordingly, we deferred the
user-side broadcast to a later stage, reducing the user-side inputs
processed in the early stage and increasing throughput by 17%.

Fourth, we improved job scheduling on MTIA 2i to increase
throughput while still meeting the latency SLO. The problem we
initially encountered was rooted in how we serve models. We typi-
cally partition our models into remote (sparse) and merge (dense)
networks, where one or more remote networks produce the ac-
cumulated sparse feature output, which is then input to a single
merge network. For models with large embeddings that cannot fit
in DRAM, we shard them across multiple accelerators. We may also
end up with multiple shards per device because TBE operators can
be either unweighted or weighted, with a weight matrix applied to
the accumulated embeddings to produce the final output.

In this setup, we observed low device utilization due to the ineffi-
cient ordering of jobs for the merge and remote networks. For each
batched request, we ideally want the job ordering on a single device
to be remote-merge-remote-merge to minimize latency. However,
in the traces, we observed that jobs were sometimes scheduled in
the order of remote-remote-merge-merge, meaning that a remote

10

15 50 57 91 105

480
600

940
1000

0

200

400

600

800

1000

1200

LC1 LC2 LC3 LC4 LC5 HC1 HC2 HC3 HC4

M
o
d

el
 C

o
m

p
le

x
it

y
(M

F
L

O
P

S
/S

am
p

le
)

2.02

1.52 1.53
1.68

2.1

1.8

1.33

1.7

1.38
1.21

0.91 0.9
1.01

1.2
1.06

0.8

1.02
0.83

LC1 LC2 LC3 LC4 LC5 HC1 HC2 HC3 HC4

Perf/TCO Perf/Watt

R
el

at
iv

e
to

 a
 G

P
U

 B
as

el
in

e

Figure 6: Complexity and efficiency of models on MTIA 2i.

for a subsequent request was scheduled before the merge of the
preceding request, which increased its overall latency. The over-
all impact was low device utilization while still meeting the 99th
percentile (P99) latency SLO of 100ms.

To improve device utilization, we decided to consolidate the
weighted and unweighted TBE instances into a single job, thereby
reducing the number of remote jobs by half. This resulted in a
significant improvement in throughput, as shown in Figure 5. Note
that the execution time of the merge and remote jobs on the MTIA
2i PE grid remains the same in both cases, so the gains were realized
higher in the serving stack, where the scheduling benefits became
visible. The measured P99 request latency decreased by 13ms, from
99ms to 86ms. Breaking this down, we observe a similar 13ms
improvement in themerge request latency, while the remote request
latency remains unchanged, indicating that the gains were derived
from higher occupancy of merge jobs on the devices.

7 Supporting Diverse Models
Our production experience has given us confidence that MTIA 2i of-
fers advantages across a wide range of models. To demonstrate this,
we show in Figure 6 the Perf/Watt and Perf/TCO of nine production
models. We classify the first five models as Low Complexity (LC)
ranging from 15 to 105 MFLOPS/sample, and the last four models as
High Complexity (HC) ranging from 480 to 1000 MFLOPS/sample.
Each of these models runs on one or two accelerators. Although
there is no clear trend for efficiency as a function of complexity,
the highest efficiency was achieved on LC models, namely LC1
and LC5, while the lowest efficiency was observed on HC models,
namely HC2 and HC4. This is consistent with the fact that a model’s
complexity and size determine howwell it fits into the global SRAM
and, therefore, how well it can utilize the Dot Product Engine and
SIMD Engine.

Although Figure 6 highlights model complexity in FLOPS, a
model’s efficiency also depends on other factors, such as the struc-
ture of the model graph, the operators, their shapes, and the batch
size. For example, HC3, the model described in Section 4, shows
high efficiency because it is co-designed with additional DHEN

layers that increase computation intensity without significantly in-
creasing the memory footprint. Similarly, HC1 achieves even higher
efficiency because its small memory footprint allows its batch size
to be pushed to 2K, the largest of any model with more than 100
MFLOPS/sample. LC1 is another interesting example; it is optimized
to run at a 4K batch size and thus achieves higher efficiency than
Model2, which only runs at a batch size of 512, despite both having
very low complexity.

The achieved performance of models also depends on the amount
of optimization effort invested. The time we spend optimizing mod-
els is proportional to their importance, such as their impact on
revenue, user experience, or the amount of capacity they consume.
Specifically, we spent more time optimizing HC1 compared to HC2
and HC4, as it accounts for a much higher fraction of revenue. It is
also worth noting that HC2 has a more challenging set of serving
features to manage, which resulted in more host-side overhead and
lower overall efficiency. Finally, when working with an in-house
custom AI chip, it is easier to outperform GPUs in Perf/TCO than
in Perf/Watt, due to GPUs having a much longer history in power
optimization.

8 Challenges and Limitations
While MTIA 2i has been highly successful at Meta, it also faces chal-
lenges and limitations. Our intentional divergence fromGPUs in the
architecture, programming model, and capabilities has introduced
a set of consequences.
Unsuitable for large language models (LLMs). As MTIA 2i
was designed prior to the boom of LLMs sparked by ChatGPT, it
was optimized for ranking and recommendation models. Given its
limited FLOPS and memory bandwidth, as well as the lack of a low-
latency, high-bandwidth communication network, it is unsuitable
for running large models such as Llama3 70B or 405B. However, we
evaluated MTIA 2i for Llama3 8B and found that, while we could
achieve acceptable performance during the prefill phase, the decode
phase failed to meet the latency requirement. During decode, both
the MHA and FFN portions of each transformer layer are limited
by the LPDDR bandwidth.
Unstuitable for highly complex models. Given the latency re-
quirements of serving in production, we will run into a limit on
model complexity where it is no longer cost effective to use MTIA
2i and we will hit this limit sooner than a contemporary GPU given
it has higher peak FLOPS and HBM. However, we believe there
is significantly more performance headroom and we should be
able to handle at least 2 GFLOPS/sample models. We also have
shown that MTIA 2i can handle HSTU-based ranking models (>10
GFLOPS/sample) efficiently at low batch sizes. For future gener-
ations of MTIA, we plan to increase their peak FLOPS to handle
more complex models.
Maturing MTIA software ecosystem. While a small number of
models consume a large fraction of our datacenter capacity, and we
can afford dedicated manual optimizations for these models due
to their importance, Meta has many models with small to medium
capacity demands, making manual optimization intractable. Al-
though we have designed MTIA software to scale with new mod-
els—enabling functional support, numerics debugging, validation,
and performance autotuning—this remains an ongoing challenge,

11

especially given the rapid evolution of our models and developer
environment. In comparison, GPUs have undergone a longer evo-
lution and have a more mature software ecosystem.

9 Conclusion
We presented an overview of MTIA 2i, highlighting our experience
with model-chip co-design and the large-scale productionization of
MTIA 2i. Encouraged by MTIA 2i’s significantly lower total cost of
ownership compared to GPUs, we are accelerating the development
of Meta’s next-generation AI chips. We expect the industry-wide
shift among major IT companies toward in-house AI chip develop-
ment to gain further momentum, driving innovative designs with
distinctive features. Finally, given the tension between the lengthy
development cycles of AI chips and the rapid evolution of the AI
field, we believe that a deep understanding of AI workloads, reason-
able projections of AI technology trends, and maintaining flexibility
in chip design without overly adding complexity are essential for
the success of future AI chips.

References
[1] 2024. Azure Maia for the era of AI: From silicon to software to sys-

tems. https://azure.microsoft.com/en-us/blog/azure-maia-for-the-era-of-ai-
from-silicon-to-software-to-systems/

[2] 2024. Introducing Enhanced Gen AI Features and Other Tools to Help Build Your
Business. https://www.facebook.com/business/news/Introducing-Enhanced-
Gen-AI-Features-and-Other-Tools-to-Help-Build-Your-Business

[3] 2024. Meta’s AI Products Just Got Smarter and More Useful. https://about.fb.
com/news/2024/09/metas-ai-product-news-connect/

[4] 2024. PyTorch Jagged Tensor Operators. https://pytorch.org/FBGEMM/fbgemm_
gpu-overview/jagged-tensor-ops/JaggedTensorOps.html

[5] Dennis Abts, John Kim, Garrin Kimmell, Matthew Boyd, Kris Kang, Sahil Parmar,
Andrew Ling, Andrew Bitar, Ibrahim Ahmed, and Jonathan Ross. 2022. The
groq software-defined scale-out tensor streaming multiprocessor: From chips-
to-systems architectural overview. In 2022 IEEE Hot Chips 34 Symposium (HCS).
IEEE Computer Society, 1–69.

[6] Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael
Voznesensky, Bin Bao, Peter Bell, David Berard, Evgeni Burovski, et al. 2024.
Pytorch 2: Faster machine learning through dynamic python bytecode trans-
formation and graph compilation. In Proceedings of the 29th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems, Volume 2. 929–947.

[7] Alexis Bjorlin. 2022. OCP Summit 2022: Open hardware for AI infrastruc-
ture. https://engineering.fb.com/2022/10/18/open-source/ocp-summit-2022-
grand-teton/.

[8] Jack Choquette, Wishwesh Gandhi, Olivier Giroux, Nick Stam, and Ronny
Krashinsky. 2021. NVIDIA A100 Tensor Core GPU: Performance and Innovation.
IEEE Micro 41, 2 (2021), 29–35.

[9] Mike Chow, Yang Wang, William Wang, Ayichew Hailu, Rohan Bopardikar, Bin
Zhang, Jialiang Qu, David Meisner, Santosh Sonawane, Yunqi Zhang, Rodrigo
Paim, Mack Ward, Ivor Huang, Matt McNally, Daniel Hodges, Zoltan Farkas,
Caner Gocmen, Elvis Huang, and Chunqiang Tang. 2024. ServiceLab: Preventing
Tiny Performance Regressions at Hyperscale through Pre-Production Testing. In
Proceedings of the 28th Symposium on Operating Systems Principles.

[10] Amin Firoozshahian, Joel Coburn, Roman Levenstein, Rakesh Nattoji, Ashwin
Kamath, Olivia Wu, Gurdeepak Grewal, Harish Aepala, Bhasker Jakka, Bob
Dreyer, et al. 2023. Mtia: First generation silicon targetingmeta’s recommendation
systems. In Proceedings of the 50th Annual International Symposium on Computer
Architecture. 1–13.

[11] Xinwei Fu, Zhen Zhang, Haozheng Fan, Guangtai Huang, Mohammad El-Shabani,
Randy Huang, Rahul Solanki, Fei Wu, Ron Diamant, and Yida Wang. 2024. Dis-
tributed training of large language models on AWS Trainium. In Proceedings of
the 2024 ACM Symposium on Cloud Computing. 961–976.

[12] Boris Grubic, Yang Wang, Tyler Petrochko, Ran Yaniv, Brad Jones, David Callies,
Matt Clarke-Lauer, Dan Kelley, Soteris Demetriou, Kenny Yu, and Chunqiang
Tang. 2023. Conveyor: One-Tool-Fits-All Continuous Software Deployment at
Meta. In Proceedings of the 17th USENIX Symposium on Operating Systems Design
and Implementation.

[13] Xinran He, Junfeng Pan, Ou Jin, Tianbing Xu, Bo Liu, Tao Xu, Yanxin Shi, Antoine
Atallah, Ralf Herbrich, Stuart Bowers, et al. 2014. Practical lessons from predicting

clicks on ads at facebook. In Proceedings of the eighth international workshop on
data mining for online advertising. 1–9.

[14] Yang Jiao, Liang Han, and Xin Long. 2020. Hanguang 800 NPU—The Ultimate AI
Inference Solution for Data Centers. In 2020 IEEE Hot Chips 32 Symposium (HCS).
IEEE Computer Society, 1–29.

[15] Norman P Jouppi, Doe Hyun Yoon, Matthew Ashcraft, Mark Gottscho, Thomas B
Jablin, George Kurian, James Laudon, Sheng Li, Peter Ma, Xiaoyu Ma, Thomas
Norrie, Nishant Patil, Sushma Prasad, and Cliff Young. 2021. Ten Lessons From
Three Generations Shaped Google’s TPUv4i. In 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA). IEEE, 1–14.

[16] Roman Kaplan. 2024. Intel Gaudi 3 AI Accelerator: Architected for Gen AI
Training and Inference. In 2024 IEEE Hot Chips 36 Symposium (HCS). IEEE, 1–16.

[17] Hanjoon Kim, Younggeun Choi, Junyoung Park, Byeongwook Bae, Hyunmin
Jeong, Sang Min Lee, Jeseung Yeon, Minho Kim, Changjae Park, Boncheol Gu,
et al. 2024. TCP: A Tensor Contraction Processor for AI Workloads Industrial
Product. In 2024 ACM/IEEE 51st Annual International Symposium on Computer
Architecture (ISCA). IEEE, 890–902.

[18] Heng Liao, Jiajin Tu, Jing Xia, Hu Liu, Xiping Zhou, Honghui Yuan, and Yuxing
Hu. 2021. Ascend: a scalable and unified architecture for ubiquitous deep neural
network computing: Industry track paper. In 2021 IEEE International Symposium
on High-Performance Computer Architecture (HPCA). IEEE, 789–801.

[19] Cedric Lichtenau, Alper Buyuktosunoglu, Ramon Bertran, Peter Figuli, Christian
Jacobi, Nikolaos Papandreou, Haris Pozidis, Anthony Saporito, Andrew Sica,
and Elpida Tzortzatos. 2022. AI accelerator on IBM Telum processor: Industrial
product. In Proceedings of the 49th Annual International Symposium on Computer
Architecture. 1012–1028.

[20] Sean Lie. 2023. Cerebras architecture deep dive: First look inside the hard-
ware/software co-design for deep learning. IEEE Micro 43, 3 (2023), 18–30.

[21] Mahesh Maddury, Pankaj Kansal, and Olivia Wu. 2024. Next Gen MTIA -
Recommendation Inference Accelerator. In 2024 IEEE Hot Chips 36 Symposium
(HCS). 1–27. https://doi.org/10.1109/HCS61935.2024.10665192

[22] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang,
Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-
Jean Wu, Alisson G Azzolini, et al. 2019. Deep learning recommendation model
for personalization and recommendation systems. arXiv preprint arXiv:1906.00091
(2019).

[23] Raghu Prabhakar. 2024. SambaNova SN40L RDU: Breaking the Barrier of Trillion+
Parameter Scale Gen AI Computing. In 2024 IEEE Hot Chips 36 Symposium (HCS).
IEEE, 1–24.

[24] Alan Smith and Vamsi Alla. 2024. AMD Instinct MI300X Generative AI Accelera-
tor and Platform Architecture. In 2024 IEEE Hot Chips 36 Symposium (HCS). IEEE
Computer Society, 1–22.

[25] Chunqiang Tang, Kenny Yu, Kaushik Veeraraghavan, Jonathan Kaldor, Scott
Michelson, Thawan Kooburat, Aravind Anbudurai, Matt Clark, Kabir Gogia,
Long Cheng, Ben Christensen, Alex Gartrell, Maxim Khutornenko, Sachin Kulka-
rni, Marcin Pawlowski, Tuomas Pelkonen, Andre Rodrigues, Rounak Tibrewal,
Vaishnavi Venkatesan, and Peter Zhang. 2020. Twine: A Unified Cluster Man-
agement System for Shared Infrastructure. In Proceedings of the 14th USENIX
Symposium on Operating Systems Design and Implementation. 787–803.

[26] Philippe Tillet, Hsiang-Tsung Kung, and David Cox. 2019. Triton: an intermediate
language and compiler for tiled neural network computations. In Proceedings of
the 3rd ACM SIGPLAN International Workshop on Machine Learning and Program-
ming Languages. 10–19.

[27] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, and Łukasz Kaiser. 2017. Attention Is All You Need. Advances
in Neural Information Processing Systems (2017).

[28] Jiaqi Zhai, Lucy Liao, Xing Liu, YuemingWang, Rui Li, Xuan Cao, Leon Gao, Zhao-
jie Gong, Fangda Gu, Michael He, et al. 2024. Actions speak louder than words:
Trillion-parameter sequential transducers for generative recommendations. arXiv
preprint arXiv:2402.17152 (2024).

[29] Buyun Zhang, Liang Luo, Yuxin Chen, Jade Nie, Xi Liu, Daifeng Guo, Yanli Zhao,
Shen Li, Yuchen Hao, Yantao Yao, et al. 2024. Wukong: Towards a Scaling Law
for Large-Scale Recommendation. arXiv preprint arXiv:2403.02545 (2024).

[30] Buyun Zhang, Liang Luo, Xi Liu, Jay Li, Zeliang Chen, Weilin Zhang, Xiaohan
Wei, Yuchen Hao, Michael Tsang, Wenjun Wang, et al. 2022. DHEN: A Deep and
Hierarchical Ensemble Network for Large-Scale Click-Through Rate Prediction.
arXiv preprint arXiv:2203.11014 (2022).

12

https://azure.microsoft.com/en-us/blog/azure-maia-for-the-era-of-ai-from-silicon-to-software-to-systems/
https://azure.microsoft.com/en-us/blog/azure-maia-for-the-era-of-ai-from-silicon-to-software-to-systems/
https://www.facebook.com/business/news/Introducing-Enhanced-Gen-AI-Features-and-Other-Tools-to-Help-Build-Your-Business
https://www.facebook.com/business/news/Introducing-Enhanced-Gen-AI-Features-and-Other-Tools-to-Help-Build-Your-Business
https://about.fb.com/news/2024/09/metas-ai-product-news-connect/
https://about.fb.com/news/2024/09/metas-ai-product-news-connect/
https://pytorch.org/FBGEMM/fbgemm_gpu-overview/jagged-tensor-ops/JaggedTensorOps.html
https://pytorch.org/FBGEMM/fbgemm_gpu-overview/jagged-tensor-ops/JaggedTensorOps.html
https://engineering.fb.com/2022/10/18/open-source/ocp-summit-2022-grand-teton/
https://engineering.fb.com/2022/10/18/open-source/ocp-summit-2022-grand-teton/
https://doi.org/10.1109/HCS61935.2024.10665192

	Abstract
	1 Introduction
	2 Production Models
	3 MTIA 2i Overview
	3.1 MTIA 2i Architecture Overview
	3.2 Processing Element (PE)
	3.3 New Features in MTIA 2i
	3.4 Server Design
	3.5 Software Stack: Evolving with PyTorch
	3.6 Discussion: Unique Memory Hierarchy

	4 Model-Chip Co-design
	4.1 Autotuning Models
	4.2 Exploit Locality Across the Stack
	4.3 Keeping Up with Model Evolution
	4.4 Limited Use of Quantization in Production

	5 Productionization Experience at Scale
	5.1 Trade-offs in Handling Memory Errors
	5.2 Overclocking at Scale
	5.3 Reducing Provisioned Power
	5.4 Advantages of Smaller Chips for Inference
	5.5 Real-time Firmware Updates for Mitigating Silicon Issues
	5.6 Large-Scale A/B Testing in Live Production

	6 Case Study: Porting a Model to MTIA 2i
	7 Supporting Diverse Models
	8 Challenges and Limitations
	9 Conclusion
	References

