
Scaling Llama 3 Training with Efficient Parallelism Strategies
Weiwei Chu†, Xinfeng Xie†, Jiecao Yu†, Jie Wang†, Amar Phanishayee, Chunqiang Tang, Yuchen Hao, Jianyu Huang, Mustafa Ozdal,
Jun Wang, Vedanuj Goswami, Naman Goyal, Abhishek Kadian, Andrew Gu, Chris Cai, Feng Tian, Xiaodong Wang, Min Si, Pavan

Balaji, Ching-Hsiang Chu, and Jongsoo Park

Meta Platforms, Inc.

Abstract
Llama is a widely used open-source large language model. This
paper presents the design and implementation of the parallelism
techniques used in Llama 3 pre-training. To achieve efficient train-
ing on tens of thousands of GPUs, Llama 3 employs a combination of
four-dimensional parallelism: fully sharded data parallelism, tensor
parallelism, pipeline parallelism, and context parallelism. Beyond
achieving efficiency through parallelism and model co-design, we
also address other equally critical aspects. First, we enhance flexibil-
ity—for example, through novel pipeline parallelism that supports
evolving batch sizes and heterogeneous model architectures, and
innovative context parallelism that enables model innovations such
as document-mask attention. Second, we prioritize practicality—for
example, by enabling the diagnosis of performance and numerical
issues at scale. Finally, drawing on our experience with large-scale
training, we provide recommendations for future hardware design.

CCS Concepts
•Computingmethodologies→Distributed computingmethod-
ologies; • Computer systems organization → Distributed archi-
tectures.

Keywords
Large Language Model, Training, Parallelism, Distributed System

ACM Reference Format:
Weiwei Chu†, Xinfeng Xie†, Jiecao Yu†, Jie Wang†, Amar Phan-
ishayee, Chunqiang Tang, Yuchen Hao, Jianyu Huang, Mustafa
Ozdal, Jun Wang, Vedanuj Goswami, Naman Goyal, Abhishek Ka-
dian, Andrew Gu, Chris Cai, Feng Tian, Xiaodong Wang, Min Si,
Pavan Balaji, Ching-Hsiang Chu, and Jongsoo Park. 2025. Scaling
Llama 3 Training with Efficient Parallelism Strategies. In Proceedings of
the 52nd Annual International Symposium on Computer Architecture (ISCA
’25), June 21–25, 2025, Tokyo, Japan. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3695053.3731410

1 Introduction
Large language models (LLMs) have revolutionized natural lan-
guage processing (NLP) by exhibiting remarkable capabilities across
a wide range of tasks, including conversational agents, language

† Co-primary authors

This work is licensed under a Creative Commons Attribution 4.0 International License.
ISCA ’25, June 21–25, 2025, Tokyo, Japan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1261-6/2025/06
https://doi.org/10.1145/3695053.3731410

translation, and code generation [3, 18, 28]. Expanding beyond text-
based applications, multimodal models further extend these capabil-
ities by enabling the understanding and generation of content across
diverse modalities such as audio, images, and video [2, 4, 19, 36, 40].

Llama [10, 37, 38] is a widely adopted open-source LLM, sig-
nificantly influencing both industry and research. Llama 3, re-
leased on April 18, 2024 [23], features its largest model with 405
billion parameters, pre-trained on 16,384 H100 GPUs over sev-
eral months, utilizing a total of 3.8 × 1025 FLOPs [10]. Training
at this hyperscale necessitates efficient parallelism strategies that
distribute the model and schedule computation and communica-
tion across GPUs. Consequently, Llama 3 was trained using a com-
bination of four-dimensional (4D) parallelism techniques: fully
sharded data parallelism (FSDP) [30, 31, 44], tensor parallellism
(TP) [14, 15, 33], pipeline parallellism (PP) [11, 16, 25], and context
parallellism (CP) [20].

Each of these parallelism techniques presents its own perfor-
mance trade-offs, and their combination creates a complex design
space that requires careful exploration to achieve optimal perfor-
mance. While numerous prior works have tackled this challenge
from different angles [9, 12, 25, 29, 35, 36, 45], our production expe-
rience in training Llama at hyperscale highlights the importance of
flexibility to dynamically adjust configurations and practicality for
debugging performance and numerical issues. We next elaborate
on the challenges in efficiency, flexibility, and practicality.

Efficiency: Llama 3 pre-training is a capability computing prob-
lem, where the primary objective is to minimize total pre-training
time bymaximizing the utilization of 16KGPUs. This poses a unique
challenge due to the limited achievable parallelism along the data
batch dimension. Specifically, designing an efficient PP schedule is
challenging, given the small number of micro-batches available to
hide pipeline bubbles. Furthermore, reducing the pipeline stages
is not a viable alternative, as it would require increasing model
parallelism, particularly TP, where communication latency is fully
exposed, slowing down training.

Flexibility: Llama 3 pre-training consists of multiple phases,
each designed to achieve specific training objectives, such as opti-
mizing for short context, long context, or multimodal understand-
ing. These phases are configured with varying hyperparameters
(e.g., global batch size and sequence length), heterogeneous model
architectures (e.g., alternating self-attention and cross-attention
layers), and differing resource allocations (e.g., the number of GPUs
used). Furthermore, the implementation of document masking [10]
introduces an input-dependent attention mask, leading to dynamic
variations in computation patterns across different training batches.
This inherent dynamism in the training workloads demands a
highly flexible system capable of adapting to these diverse changes
while maintaining high efficiency.

1

https://doi.org/10.1145/3695053.3731410
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3695053.3731410

ISCA ’25, June 21–25, 2025, Tokyo, Japan Weiwei Chu, Xinfeng Xie, Jiecao Yu, Jie Wang, et al.

Practicality: Implementing and optimizing 4D parallelism across
16K GPUs poses significant practical challenges, especially in de-
bugging. Performance debugging (i.e., identifying the root cause
of performance slowdowns) is complex, as issues can propagate
across the entire distributed system. The first rank where a problem
is observed is often not the true source, complicating root-cause
analysis. Moreover, debugging numerical issues adds another layer
of complexity. For instance, determining whether a deviation in loss
curves stems from an implementation error or from the accumula-
tion of small precision differences across many parallel ranks using
low-precision floating-point arithmetic is particularly challenging.

This paper details the Llama 3 training framework, which intro-
duces new features that address efficiency, flexibility, and practical-
ity challenges at scale. Our contributions include:
• We optimize 4D parallelism for 16K GPUs, fitting the large model
into memory and overcoming batch size constraints. Moreover,
we co-design parallelism with model hyperparameters (number
of layers and layer types) to balance computation and memory
usage in PP. For the 405B Llama 3model on 16K GPUs, we achieve
400 TFLOPs per GPU (8K sequence length) and 380 TFLOPs per
GPU (131K sequence length).

• We introduce a flexible PP schedule that supports variable global
batch sizes and heterogeneous layer sharding, demonstrated in
Llama 3 multimodal pre-training with balanced memory usage
and high throughput. We also propose a novel all-gather-based
CP solution that facilitates model innovations (e.g., document-
mask attention [10]), achieving performance comparable to state-
of-the-art baselines [21] and strong scalability (3.89× attention
latency reduction on four GPUs compared to one GPU).

• We share ourmethodology and lessons in debugging performance
and numerical issues at scale. Our top-down trace analysis identi-
fies the slowest rank across parallelism dimensions and pinpoints
the root cause. Our numerical debugging method isolates non-
parallel implementations to rule out software bugs and to identify
critical gradient buffers that require high-precision floating-point
accumulations.

The rest of this paper is organized as follows: Section 2 provides
background on parallelism and Llama 3 pre-training. Sections 3
and 4 detail our novel PP and CP solutions. Sections 5 and 6 describe
combined parallelism configurations and debugging methodology.
Section 7 presents system evaluation results, and Section 8 offers
hardware recommendations based on our experience with Llama 3
pre-training. Finally, we conclude in Section 9.

2 Background
This section outlines the parallelism strategies employed in Llama
3 pre-training, followed by an overview of the text and multimodal
pre-training phases.

2.1 4D Parallelism
Given the ever-increasing scale of large language models (LLMs),
distributed training is essential; accordingly, we utilize a 4D paral-
lelism approach.
Fully sharded data parallelism (FSDP): Conventional data paral-
lelism, i.e., distributed data parallelism (DDP) [17], replicates the full

The dog
I love

is happy.
my car.

GPU0 GPU1 GPU2 GPU3

She eats
He plays

a sandwich.
the guitar.

Layer0 Layer0

GPU4

GPU5

Layer1

CP0 CP1

GPU6

GPU7

Layer1
PP

TP TP

GPU8 GPU9 GPU10 GPU11
Layer0 Layer0

GPU12

GPU13

Layer1

CP2 CP3

GPU14

GPU15

Layer1

TP TP

FSDP0 FSDP1

CP CP

Figure 1: A two-layer LLM is sharded across 16 GPUs using
4D parallelism. FSDP and CP shard input data, with FSDP
sharding along the batch size dimension and CP sharding
along the sequence dimension. TP and PP shard model pa-
rameters, with TP sharding within the same layer and PP
sharding across layers.

model weights across workers (GPUs) and distributes data batches
among them. This necessitates global gradient synchronization at
the end of each training iteration. Llama 3 pre-training leverages
an in-house implementation based on Pytorch’s fully sharded data
parallelism (FSDP) [44] which extends data parallelism by sharding
model weights, gradients, and optimizer states across workers. For
simplicity, we use DP and FSDP interchangeably in the remainder
of this paper. Our FSDP implementation supports three sharding
strategies aligned with the Zero Redundancy Optimizer (ZeRO)
definitions from DeepSpeed [30] (ZeRO-1, ZeRO-2, and ZeRO-3),
allowing for optional sharding of model parameters, gradients, and
optimizer states.
Tensor parallelism (TP): TP partitions the linear modules of
the transformer layer across GPUs. Our implementation follows
the approach introduced in Megatron-LM [33], splitting GEMM
operators along either input or output dimensions. TP distributes
computation and memory costs across GPUs but introduces addi-
tional communication overheads. Sequence parallelism (SP) is often
used in conjunction with TP to further reduce activation memory
costs [14]. SP shards sequence-dependent operations across TP
ranks, typically involving all-gather and reduce-scatter communi-
cation around the TP-partitioned modules, which reduces memory
at the cost of increased communication.
Pipeline parallelism (PP): PP divides model layers into sequen-
tial stages and distributes these stages across different PP ranks.
Computation across micro-batches then proceeds in a pipelined
fashion. Figure 2 illustrates an example using the interleaved 1F1B
PP schedule [33]. In this configuration, each rank manages multi-
ple virtual stages composed of non-consecutive model layers (e.g.,
rank 0 handles layers 0 and 3). The example shows 6 micro-batches
processed in 2 rounds, where each virtual stage handles 𝑛𝑐 = 3
consecutive micro-batches per round (processing micro-batches 0-2
or 3-5). Activation memory usage on each PP rank depends on the
number of warm-up micro-batches. The interleaved 1F1B schedule
requires the total batch size to be a multiple of the number of PP
ranks.
Context parallelism (CP): CP shards the input sequence data
across GPUs. This applies directly to modules invariant to the
sequence dimension (e.g., feed-forward networks). However, the

2

Scaling Llama 3 Training with Efficient Parallelism Strategies ISCA ’25, June 21–25, 2025, Tokyo, Japan

0 1 2

0 1 2

0 1 2

0 1 2

0 1

0 0

3

0

1

4

3

2

1

2

0

2

5

4

3

2

1

0

3

5

4

0

1

2 4

3

5

1

2

5

4

3

2

3

1

5

4

3

4

2

5

4

5

30

5

3

4

3

4

5

4

5

3

5

4 5

Virtual Stage 0
forward

Virtual Stage 1
forward

Virtual Stage 0
backward

Virtual Stage 1
backward

Idle

PP Rank 0

PP Rank 1

PP Rank 2

Virtual
Stage 1

Virtual
Stage 0

Layer 4

Layer 3

Layer 0

Layer 5

Layer 2

Layer 1

Forward

Backward

Rank 0 Rank 1 Rank 2

1

Warm-up 1F1B Cool-downnc

Figure 2: A 6-layer LLM is sharded across 3 PP ranks, which
executes 6 micro-batches using the 1F1B PP schedule [33].
Each rank hosts two virtual stages, with each virtual stage
containing a single model layer. The model layers are dis-
tributed in an interleaved manner, such that layer 0 and
layer 3 are on rank 0, layer 1 and layer 4 are on rank 1, and
so on. The 6 micro-batches are divided into two rounds, with
each virtual stage processes 𝑛𝑐 consecutive micro-batches per
round, where 𝑛𝑐 = 3 in this example.

attention mechanism requires the full sequence context, necessitat-
ing communication for reconstructing the sequence. While prior
work employed ring-style communication to pass key/value ten-
sors between adjacent ranks [21], overlapping communication and
computation, we propose a straightforward all-gather-based CP
approach. In our method, the communication latency (all-gather)
is fully exposed. We detail this simple yet flexible and efficient
approach in Section 4.

2.2 Llama 3 Pre-training Overview
Llama 3 pre-training [10] consists of three major phases: short con-
text pre-training, long context text pre-training, and multimodal
pre-training. Throughout the pre-training process, we incremen-
tally increased the number of GPUs, global batch sizes, and se-
quence lengths. For multimodal pre-training, we enhanced the text
model by introducing additional cross-attention layers and a train-
able image encoder. The cross-attention layers take the outputs
from the image encoder and the preceding transformer layer as
inputs, effectively capturing the interactions between images and
text. Notably, during pre-training, the original text model layers
(i.e., non-cross-attention layers) remain frozen, while only the cross-
attention layers and image encoder are trained.

Tomaximize training efficiency, we employ 3D parallelism (FSDP,
TP, and PP) for short context pre-training and 4D parallelism (FSDP,
TP, PP, and CP) for long context pre-training. For multimodal pre-
training, we adopt a hybrid sharding strategy, where the image
encoder is sharded using 2D parallelism (FSDP and TP) and the text
model is sharded using 3D parallelism.

In the subsequent two sections, we present our novel PP and
CP designs, which achieve high efficiency and flexibility to accom-
modate diverse training workloads. For clarity, we summarize all
parameters and their explanations used throughout this paper in
Table 1.

Table 1: Parameters and definitions used in this paper.

Parameter Definition

𝑛𝑔𝑝𝑢 Number of GPUs

𝑠𝑒𝑞 Sequence length

𝑔𝑏𝑠 Global batch size

𝑏𝑠 Batch size per data parallel group

𝑚𝑏𝑠 Micro-batch size in pipeline stage execution

𝑑𝑝/𝑡𝑝/𝑐𝑝/𝑝𝑝 GPU number in one data/tensor/context/pipeline parallel group

𝑛𝑑𝑝 Number of data parallel group

𝑣 Number of virtual stages on one PP rank

𝑝𝑝𝑟 The index of PP ranks

𝑛𝑐 Number of continuous micro-batches for a virtual stage

𝑛𝑚𝑏 Number of micro-batches for each virtual stage

𝑡𝑚𝑏 Sum of 𝑛𝑚𝑏 for 𝑣 virtual stages on one PP rank

3 Pipeline Parallelism
In this section, we present the design of PP and its application to
multimodal training.

3.1 Design Overview
Our PP design is based on the interleaved 1F1B schedule [25]. We
have made multiple optimizations and co-designed with the Llama
model during pre-training to enhance efficiency and flexibility. We
present the details of our optimizations as below.

3.1.1 Flexible PP schedule that supports arbitrary batch size. The
original interleaved 1F1B schedule implementation constrains the
batch size to be a multiple of the number of PP ranks [25]. During
Llama 3 training, the global batch size is adjusted across multiple
phases, necessitating a PP schedule that supports flexible batch size.
We implement a flexible PP schedule that removes this constraint
on the number of micro-batches.

In the 1F1B schedule, the number of warm-up micro-batches
from each pipeline stage is (𝑣−1)×𝑛𝑐+2×(𝑝𝑝−𝑝𝑝𝑟 ×𝑣−1), where
𝑣 is the number of virtual stages on each PP rank, 𝑛𝑐 is the number
of consecutive micro-batches per stage, 𝑝𝑝 is the pipeline size, and
𝑝𝑝𝑟 is the pipeline rank index. The total number of micro-batches
on one PP rank, 𝑡𝑚𝑏, is the sum of micro-batches across all virtual
stages, 𝑛𝑚𝑏 × 𝑣 , where 𝑛𝑚𝑏 is the number of micro-batches. The
original 1F1B schedule requires 𝑛𝑐 == 𝑝𝑝 and 𝑛𝑚𝑏%𝑛𝑐 == 0. Note
that in PP, there are certain phases when GPUs are idle, waiting
for the new micro-batches or tokens from other PP ranks. We refer
to these idle times as PP bubbles. The PP bubble ratio, defined as
the PP idle time over the forward and backward compute time, is
computed as (𝑝𝑝 − 1)/𝑛𝑚𝑏/𝑣 [33]. To minimize the PP bubble, we
prefer a smaller 𝑝𝑝 , more micro-batches 𝑛𝑚𝑏 and more PP virtual
stages 𝑣 .

3

ISCA ’25, June 21–25, 2025, Tokyo, Japan Weiwei Chu, Xinfeng Xie, Jiecao Yu, Jie Wang, et al.

fprop fprop fprop fprop Critical Path

fprop fprop fprop fprop

fprop fprop fprop fprop

fprop fprop fprop fprop

fprop fprop fprop fprop

fprop fprop fprop fprop

fprop fprop fprop fprop

fprop fprop fprop fprop

fprop

fprop

fprop

fpropP2P overlap

fprop

fprop

fprop

fprop

fprop

fprop

fprop

fprop

Extra Microbatch to Hide P2P

fprop fprop fprop fprop Critical Path

fprop fprop fprop fprop

fprop fprop fprop fprop

fprop fprop fprop fprop

fprop fprop fprop fprop

fprop fprop fprop fprop

fprop fprop fprop fprop

fprop fprop fprop fprop

fprop

fprop

fprop

fpropP2P overlap

Bubble due
to P2P

? a?

? b?

Figure 3: (a) In 1F1B schedule, bubble is introduced by ex-
posed P2Ps (red arrows). (b) Running extra micro-batches
(purple) helps reduce the bubble from exposed P2Ps.

Time

Virtual stage 0 forward

Virtual stage 0 backward

Virtual stage 1 forward

Virtual stage 1 backward

Virtual stage 2 forward

Virtual stage 2 backward

Virtual stage 3 forward

Virtual stage 3 backward

Idle Optimizer

G
ra

d
ie

n
t

M
em

o
ry

 U
sa

g
e

Time

(a) 1F1B ZeRO-1

(b) all F all B ZeRO-2

G

G

G

G

G G G G

G
ra

d
ie

n
t

M
em

o
ry

 U
sa

g
e

Reduce Scatter

Time

G
ra

d
ie

n
t

M
em

o
ry

 U
sa

g
e

(c) 1F1B ZeRO-2

G G G G G G G G

Figure 4: Gradient memory lifetime in different combina-
tions of PP schedules and FSDP ZeRO modes: (a) 1F1B with
ZeRO-1, reduce-scatter is launched only on the last micro-
batch. (b) All forward all backward (same behavior between
ZeRO-1/2. (c) 1F1B with ZeRO-2, reduce-scatter is launched
on the last consecutive micro-batch.

Our flexible PP schedule allows 𝑛𝑐 to be set to any number be-
tween 1 and 𝑛𝑚𝑏, and 𝑛𝑚𝑏 can be any required number. When
𝑛𝑐 exceeds 𝑝𝑝 , we insert 𝑛𝑐 − 𝑝𝑝 more micro-batches per virtual
stage into the warm-up phase. These extra micro-batches help to
overlap point-to-point communication, as shown in Figure 3. How-
ever, this comes at the cost of increased peak memory usage due to
(𝑛𝑐 −𝑝𝑝) × (𝑣 −1) more in-flight warm-up micro-batches compared
to the original interleaved 1F1B schedule. When 𝑛𝑐 is less than 𝑝𝑝 ,
the schedule degenerates into an all-forward-all-backward sched-
ule [11], where we execute the forward passes of all virtual stages
before initiating the backward passes, as illustrated in Figure 4.

3.1.2 Balanced PPwithmodel co-design. Uniformly shardingmodel
layers across PP ranks can lead to memory and computation imbal-
ance. This imbalance is caused by the varying number of warm-up
micro-batches on different PP ranks and the presence of special-
ized model structures, such as input embedding and output head,
which are only located on the first and last PP ranks. Consequently,
training may encounter out-of-memory (OOM) issues on the first
PP rank, while later ranks have substantial available memory, or
experience pipeline bubbles due to the heavy computational load
on the last PP rank. To mitigate these issues, we co-designed the
PP schedule with the model architecture. Specifically, we reduced
one layer from the first pipeline rank to decrease the peak mem-
ory across PP ranks, and similarly reduced one layer from the last
pipeline rank to balance the computational workload. As a result,
the Llama 3 405B model is configured with 126 layers (instead of
128 layers at the very beginning).

3.1.3 Co-optimization of PP and FSDP. We investigate the combi-
nation of FSDP with ZeRO-1/ZeRO-2 and PP. The 1F1B schedule
alternates between the execution of different virtual stages, neces-
sitating the gradient accumulation across executions of the same
virtual stage. FSDP ZeRO-2 with PP reshards gradients to save
memory, but at the cost of additional gradient reduce-scatters, as
illustrated in Figure 4. In contrast, FSDP ZeRO-1 with PP retains
unsharded gradients across virtual stages, trading off increased
memory usage for reduced communication overhead. For Llama
3 training, we adopt FSDP ZeRO-1 with the 1F1B schedule when
𝑏𝑠 >= 2 × 𝑝𝑝 and ZeRO-2 with all-forward-all-backward when
𝑏𝑠 < 2×𝑝𝑝 , to achieve better performance. Our experiments reveal
that, at larger scales, FSDP reduce-scatter can lead to traffic conges-
tion with other parallelisms, resulting in degraded point-to-point
(P2P) performance.

3.2 Case Study: Multimodal Training
In this section, we provide a detailed overview of Llama 3’s mul-
timodal training, highlighting how we adapt our PP schedule to
enable efficient and flexible training.

The Llama 3 multimodal model combines a pre-trained ViT
image encoder [42] and the pre-trained Llama 3 text model. To
integrate the two, we insert transformer layers that utilize cross-
attention (hereafter referred to as cross-attention layers) into every
few original transformer layers from the text model, which employ
self-attention (hereafter referred to as self-attention layers). The
cross-attention layers take inputs from both the image encoder
and self-attention layers. The model architecture is illustrated in
Figure 5. During pre-training, the self-attention layers are frozen,
while the image encoder and cross-attention layers are trained.
For further training details, please refer to the Llama 3 technical
report [24].

Due to the differences in model architecture mentioned above,
we encounter two key challenges when scaling multimodal pre-
training.
• Challenge 1: Sharding of image encoder. In addition to the
text model, we must also consider the sharding of the image
encoder, which has distinct compute and memory characteristics.
Furthermore, the sharding strategy must be general and flexible
to scale effectively across various image encoder configurations,

4

Scaling Llama 3 Training with Efficient Parallelism Strategies ISCA ’25, June 21–25, 2025, Tokyo, Japan

Self-Attention Block

Cross-Attention Block

Self-Attention Block

Self-Attention Block

Self-Attention Block

Cross-Attention Blcok

Image
EmbeddingsText Tokens

Text Tokens

N
Language Model

Multimodal Architecture Cross-attention Architecture

Image Encoder

Tanh Gate

Cross-Attention

FFN

Tanh Gate

Figure 5: Illustration of Llama 3 multimodal architecture.

as overfitting to a specific configuration can result in suboptimal
performance on others.

• Challenge 2: Workload imbalance of the text model. The
self-attention and cross-attention layers exhibit distinct compute
and memory characteristics: (1) the text sequence length is much
shorter (less than 200 tokens) compared to the pre-trained text
model (8K tokens), and (2) the majority of the model weights (self-
attention layers) is frozen. Consequently, directly reusing the PP
configuration from text pre-training, which assigns one trans-
former layer per virtual PP stage, results in a severe workload
imbalance across PP ranks.
In the following sections, we describe how we adapt our PP

designs to address these two challenges.

3.2.1 Sharding of image encoder. We evaluated three candidate
sharding choices before implementation, as depicted in Figure 6.
Option 1: Shard the whole (image + text) model with PP . We
place the image encoder on the first PP rank and run it together
with the first text model virtual stage on the first PP rank for each
micro-batch. Outputs from the image encoder are passed down
along with transformer layer outputs to all other PP ranks through
P2P communication.
Option 2: Separate the image and text model, and apply PP
only to the text model. We separate the image encoder from the
text model, run the image encoder as a pre-processing stage of the
text model on the first PP rank, and then broadcast image tokens
to all pipeline stages and split them into micro-batches to feed the
text model, which is trained with PP. After the text model pipeline
finishes, the gradients of the image tokens are all-reduced, and we
run the backward pass of the image encoder.
Option 3: Shard the image model across PP ranks. We shard
or duplicate the image encoder across all PP ranks. Each image
encoder replica takes a portion of the input (𝑏𝑠/𝑝𝑝). The outputs
are all-gathered across the PP stages and fed to the text model
pipeline.

Among the three options, Option 1 requiresminimal code changes,
as we could reuse the PP design for the text model and only pack
more tokens (to include the image tokens) for P2P communication.

However, this design worsens the workload balancing issues for
PP, as the first PP rank is assigned more compute, including the im-
age encoder. As the configurations of image encoder could change
during training, this design is inflexible and struggles to adapt to
these changes while maintaining high efficiency.

In contrasat, Option 2 and 3 decouple the image encoder from
the text model and offer more flexibility in configuration during
training. In our initial implementation, we adopted Option 2 for
ease of implementation. By placing the image encoder and reducing
the text model transformer layers on the first PP rank, we achieved a
good training throughput. However, later during the training stages,
the image resolution was significantly increased (from 448×448 to
672×672 pixels), and more transformer layers were added into the
image encoder. Combining these factors, the image encoder took
a much longer latency (up to 33% of the combined image and text
model training latency), leading to a significant drop in overall
training throughput.

To address this issue, we switched to Option 3, replicating the
image encoder on each PP rank, splitting the data batch into micro-
batches, and letting the encoder compute them in parallel. This
optimization reduced the encoder compute ratio from 33% to 8%
and recover the TFLOPs achieved before the model changes.

3.2.2 Workload imbalance of text model. There are two key differ-
ences between cross-attention and self-attention layers.
• Cross-attention takes both image and text sequences as the inputs,
whereas self-attention only takes the text sequence as input. The
image sequence is much longer than the text sequence during
pre-training (e.g., 1.2K tokens for 448×448 resolution and 3K
tokens for 672×672 resolution, compared to less than 200 tokens
for the text sequence). As a result, the compute FLOPs of cross-
attention layers in the forward pass are much larger than those
of self-attention layers, depending on the ratio of image and text
sequence lengths in the batch.

• Self-attention layers are frozen in the training. As a result, during
the backward pass, self-attention layers only compute input gra-
dients, whereas cross-attention layers compute both weight and
input gradients, further exacerbating the workload imbalance
between the two layers.
When partitioning the text model for PP, we explored two op-

tions for placing self-attention and cross-attention layers: (1) wrap-
ping 𝑛 self-attention layers and one cross-attention layer in one
PP virtual stage, or (2) wrapping either 𝑛 self-attention layers or
one cross-attention layers in one virtual stage. Option 1 achieves a
more balanced workload distribution across PP ranks but results
in fewer PP virtual stages and a larger PP bubble ratio. In compari-
son, Option 2 generates more PP virtual stages with a smaller PP
bubble ratio. However, achieving workload balance is challenging
due to the workload differences discussed above. In Llama 3 multi-
modal pre-training, we adopted Option 1 due to its simplicity. We
co-designed the multimodal model to determine the final ratio of
cross-attention layers to self attention layers (4:1), which achieved
a reasonable training throughput and helped meet the production
training deadline given the compute budget.

5

ISCA ’25, June 21–25, 2025, Tokyo, Japan Weiwei Chu, Xinfeng Xie, Jiecao Yu, Jie Wang, et al.

Transformer
Output1

 PP Rank 0
Image

Encoder
Transformer

Microbatch1

Microbatch0

Image Output1

Image Output0

 PP Rank 1 Transformer

Transformer
Output0

Point to point
communication

 PP Rank 0

Batch

Image Output1

Image Output0
 PP Rank 1

Image Output

Image Output1

Image Output0

Broadcast to all PP ranks
and split into microbatch

 PP Rank 0 Transformer

Microbatch0

Image Output1

Image Output0 PP Rank 1 Transformer

Image output0

Image Output1

Image Output0

Allgather outputs
Microbatch1

Image Output1

(a) Shard the whole (image+text)
model in PP

(b) Separate the image and text model, and apply PP
only to the text model

(c) Shard the image model across PP stages

Image
Encoder

Transformer
Output1Transformer

Output0

Transformer

Transformer

Image
Encoder

Image
Encoder

Transformer
Output1Transformer

Output0

Figure 6: Options to shard the encoder with PP. (a) Place the encoder on the first PP rank, and communicate outputs from
both the image encoder and transformer layers across PP ranks. (b) Place the encoder on the first PP rank, pre-process all
inputs with the image encoder and broadcast the encoder output; then run the training of the text transformer model. (c)
Replicate/shard the encoder on all PP ranks, and shard inputs across PP so that each encoder replica processes 𝑏𝑠/𝑝𝑝 portion of
inputs. All-gather outputs before running the transformer.

Chunk

Chunk

0 1 2 3

00

1

2

3

Head Dim

Tokens (Seq Len)

To

ke
ns

 (
S

eq
 L

en
)

Chunk 0 1 2 3

Chunk

00

1

2

3

(a) CP Causal Mask (b) Doc Mask (c) CP Doc Mask

Figure 7: Examples of CP sharding for different attention
masks.

4 Context Parallelism
To enable long context training for Llama 3, we introduce context
parallelism (CP) by splitting input tokens along the sequence length
dimension. Although decreasing the DP size 𝑑𝑝 to increase CP size
𝑐𝑝 requires an increase of the batch size per DP group𝑏𝑠 to maintain
the same global batch size𝑔𝑏𝑠 , the use of PP in 4D parallelismmakes
the peak memory usage independent of 𝑏𝑠 . Consequently, when
CP splits along the sequence length, it reduces the peak memory
usage despite the increasing 𝑏𝑠 . For more information on how each
parallelism affects memory usage, please refer to Section 5.
Design: In Llama 3, we propose and develop an all-gather-based
CP attention to deliver an efficient and flexible solution. This is
achieved by all-gathering key(K) and value(V) tensors before at-
tention computation. Although existing work, such as RingAtten-
tion [21], has proposed solutions to overlap P2P communication of
blocks of tokens with computation, we adopt the all-gather-based
CP attention for two primary reasons:

First, the Llama 3 model architecture requires flexibility to sup-
port irregular attention masks, whereas existing work assumes the
usage of a full causal mask. Specifically, the attention mask in Llama
3 enforces tokens to attend only to other tokens from the same
document (i.e., document mask), and this document boundary de-
pends on the position of the end-of-sequence IDs (eos_ids) in input
tokens. Computing the mask on every tile of tokens is error-prone,
and irregular token communication makes it challenging to fully
utilize network bandwidth.

Second, the all-gather approach does not incur significant per-
formance overhead compared to ring-based approaches. Due to
multi-group attention (MGA) or group query attention (GQA), the
number of KV heads is smaller than the number of heads, resulting
in smaller K and V tensors compared to the Q tensor in attention.
Moreover, the communication latency is under a time complex-
ity of 𝑂 (𝑠𝑒𝑞) with increasing of sequence length (denoted as 𝑠𝑒𝑞),
while the time complexity of attention computation is𝑂 (𝑠𝑒𝑞2). This
makes the exposed all-gather communication latency a smaller por-
tion of CP attention as 𝑠𝑒𝑞 increases. With smaller sequence lengths
(e.g., 𝑠𝑒𝑞 = 8192 or 𝑠𝑒𝑞 = 16384), all-gather-based attention can
still achieve a comparable performance to RingAttention because
RingAttention requires merging partial attention results with scal-
ing and rescaling according to softmax log-sum-exp results [7, 8].
More concrete results on the performance comparison between
all-gather-based and ring-based CP attention can be found in Sec-
tion 7.2.
Implementation: In our CP attention implementation, we split
the input tokens evenly into 2 × 𝑐𝑝 chunks and assign each rank 𝑖
to process both the 𝑖-th and (2 × 𝑐𝑝 − 𝑖 − 1)-th chunks of tokens.
This sharding strategy ensures a balanced computation workload
among CP ranks. For example, Figure 7(a) illustrates a split of input
tokens into 4 chunks for 𝐶𝑃 = 2, where the purple area represents
the computation workload among token chunks with the causal
mask (token 𝑖 only attends token 0, 1, ..., 𝑖 − 1). Figure 7 also shows
an example of a document mask in Llama 3, where tokens only
attend to other tokens from the same document. Although the
document mask reduces the computation workloads, we still adopt
the sharding strategy optimal for the full causal mask because the
elapsed time of a train step is often bounded by the slowest rank
of DP group and PP stages. In these cases, the slowest rank often
processes the full long sequence without an eos_id to split tokens.

The document mask poses a challenge to CP attention, as the
document boundary is irregular and input-dependent, and it does
not align with the static CP sharding of tokens. In our all-gather-
based implementation, we all-gather K and V tensors, making com-
putation on each Q token independent. For example, Chunk 1 in

6

Scaling Llama 3 Training with Efficient Parallelism Strategies ISCA ’25, June 21–25, 2025, Tokyo, Japan

Figure 7(c) only needs Chunk 0 and Chunk 1’s K and V tensors
to compute output results. However, some tokens in Chunk 1 still
need to attend to tokens from Chunk 0 because there belong to
the same document across the CP sharding boundary. For instance,
considering the example in Figure 7 with 16 tokens and a docu-
ment length of [3, 3, 8, 2], the first two tokens in Chunk 1 need
to attend to all three tokens from the same document. To address
this challenge, we pad the Q sequence length with leading zeros
for attention computation outside this chunk of tokens. However,
we retain the K and V sequence length information, as we have a
full K and V tensors after all-gather. This approach enables us to
implement an efficient and accurate CP attention mechanism that
supports the document mask.
Integration: When integrating CP into the end-to-end training
system, we need to consider its impact on several components:
Data parallel (DP) group: Although CP splits input tokens along
the sequence length, the tokens processed by the same CP group
still share the same set of model parameters. Consequently, CP
can be seen as an extension of DP when communicating model
parameters, such as during all-gather operations of parameters and
reduce-scatter of parameter gradients.
CP ranks: Ranks within the same CP group select their local
tokens and compute their own attention masks using the entire
sequence. As detailed in our CP attention implementation, each CP
rank requires a complete sequence to accurately compute the KV
seqlen and adjust the pad Q seqlen. Local token selection follows
our shardingmethod, where rank 𝑖 takes both 𝑖-th and (2×𝑐𝑝−𝑖−1)-
th chunks of tokens. Additionally, positional encodings should be
selected appropriately [41].
Dataloaders: Dataloaders continue to provide different batches
of input training data to the original DP groups. The sequence
length split is not visible to the tokenizer because each CP rank
requires the full sequence information to compute the attention
mask accurately.

5 4D Parallelism for Llama 3
We provide an overview of parallelism configurations for training
Llama 3 at scale in Table 2. Training Llama 3 models on 16K GPUs
is a capability computing challenge, where the goal is to maximize
efficiency to reduce the total training time. At this scale, a fixed
batch size of 16M tokens per training step restricts the degree of
parallelism achievable across training samples. In this section, we
elaborate on our reasoning process for finalizing parallelism config-
urations (i.e., determining the size of each parallelism dimension)
to fully leverage 16K GPUs in the training of Llama 3 models with
a global data batch size of 16M tokens.

5.1 The Size of Parallelism Dimensions
We decouple the size of multiple parallelism dimensions into several
key steps: First, we determine the minimal TP size considering the
limited global batch size. Second, we explore the rational of using
3D parallelism instead of 2D parallelism in Llama 3. Finally, we
explain the advantages of incorporating CP in long context training,
and the configuration of our 4D parallelism. The definitions of the
symbols used in this section are provided in Table 1.

Table 2: The size of each parallelism dimension for Llama 3
pre-training of 405B models with a global batch size of 16M
tokens on 16K GPUs (more details in the Table 4 of the Llama
3 technical report [10]).

Context Length Global Batch Size TP CP PP DP

8,192 2,048 8 1 16 128

131,072 128 8 16 16 8

TP size: For a global token budget of 16M and sequence length
𝑠𝑒𝑞 8K, the global batch size 𝑔𝑏𝑠 is 2048. The per-GPU batch size
𝑏𝑠 = 𝑔𝑏𝑠/𝑛𝑑𝑝 , where 𝑛𝑑𝑝 is the number of data parallel groups, cal-
culated as 𝑛𝑑𝑝 = 𝑛𝑔𝑝𝑢/𝑑𝑝 = 𝑛𝑔𝑝𝑢/𝑡𝑝/𝑝𝑝/𝑐𝑝 . Using 2D parallelism,
𝑏𝑠 becomes 𝑔𝑏𝑠/𝑛𝑑𝑝 = 2𝐾/(16𝐾/𝑡𝑝/1/1) = 𝑡𝑝/8. To ensure 𝑏𝑠 ≥ 1,
we require 𝑡𝑝 ≥ 8. With 3D parallelism, 𝑏𝑠 is 𝑡𝑝 ×𝑝𝑝/8. For efficient
PP with minimal bubbles, we prefer 𝑏𝑠 ≥ 𝑝𝑝 , thus 𝑡𝑝 ≥ 8. Therefore,
when training with 16M tokens per step on 16K GPUs, 𝑡𝑝 ≥ 8 is
necessary for both 2D and 3D. In our training cluster setting, each
node has 8 GPUs. Setting 𝑡𝑝 ≤ 8 limits TP to use intra-node com-
munication (i.e., NVLink), offering much higher bandwidth than
inter-node communication. In summary, 𝑡𝑝 = 8 is optimal TP given
the batch size and hierarchical network bandwidth constraints.
2D or 3D parallelism: To fit the model into memory, we consider
either 2D parallelism (FSDP ZeRO-3 + TP) or 3D parallelism (FSDP
ZeRO-1/2 + TP + PP). With 𝑡𝑝 = 8 for both 2D and 3D, the efficiency
mainly depends on the FSDP and PP communication overheads. For
2D with 𝑏𝑠 = 1, the computation latency is not long enough to hide
FSDP communications, while 3D has cheaper and more stable P2P
communications; thus, we chose 3D parallelism. For example, each
model parameter contributes to 2 bytes of communication data in
FSDP ZeRO-3 (assuming BF16 data type) and 2 computation FLOPs
for every token in the forward pass. When training with 8K tokens
(𝑏𝑠 = 1 and 𝑠𝑒𝑞 = 8192), the arithmetic intensity of computation
over communication is (2 × 8𝐾)/2 FLOPs per communication byte,
which is much lower than the hardware ratio of peak computation
FLOPs over network bandwidth, i.e. 989 TFLOPs for BF16 on Nvidia
H100 GPU [26] over 50 GB/s RoCE network bandwidth (989𝐾/50 =
19.78𝐾) [24].

When configuring 3D parallelism, we chose 𝑝𝑝 = 16 to fit the
model into memory. We did not consider FSDP ZeRO-3 with PP for
three reasons: First, the model parallelism dimensions (𝑝𝑝 = 16 and
𝑡𝑝 = 8) are large enough to accommodate 405B models. Second,
FSDP ZeRO-3 has extra communication overheads on every PP
stage forward and backward. Third, FSDP communications have
performance interference when overlapped with PP. In particular,
inter-host P2P communications of PP are slowed down due to the
resource contention of network hardware bandwidth between PP
and FSDP communications.
4D parallelism for long context: For the long context phase of
Llama 3 pre-training, the global batch size is reduced from 2K to
128 as the sequence length is increased to 128K, while the number
of tokens per global batch remains the same. Without changing
the parallelism configuration, this immediately means 𝑏𝑠 drops to 1
which completely tanks performance due to unbearable bubble in
PP. Decreasing DP leads to larger TP or PP in exchange for a larger

7

ISCA ’25, June 21–25, 2025, Tokyo, Japan Weiwei Chu, Xinfeng Xie, Jiecao Yu, Jie Wang, et al.

𝑏𝑠 . However, neither trade-offs is favorable because increasing PP
at the same rate does not resolve the pipeline bubble issue, and
increasing TP beyond 8 introduces expensive inter-host TP com-
munications on the critical path. Given this, CP comes in as the
perfect solution by sharding the sequence dimension within each
training sample.

When we introduce CP to existing parallelism, we first need to
consider replacing which parallelism dimensions with CP. When
the global token budget remains 16M but the sequence length in-
creased to 131K, 𝑔𝑏𝑠 becomes 128. With the batch size constraint
𝑏𝑠 ≥ 1, we cannot replace TP or PP with CP; thus we can only
replace DP with CP. With 𝑡𝑝 = 8 and 𝑝𝑝 = 16, as discussed pre-
viously, 𝑔𝑏𝑠/(𝑛𝑔𝑝𝑢/𝑡𝑝/𝑝𝑝/𝑐𝑝) ≥ 𝑝𝑝 is strongly preferred for PP
efficiency, which means 𝑐𝑝 ≥ 16. We use 𝑐𝑝 = 16 to minimize CP
communication overheads. Overall, CP allows us to easily scale to
the long context training phase while keeping the same 𝑏𝑠 and 𝑝𝑝
configurations and additionally reduces activation memory usage
by sharding the sequence length dimension.

5.2 The Order of Parallelism Dimensions
To maximize the efficiency of our training cluster’s network band-
width, we order the parallelism levels carefully. Our training cluster
has a hierarchical network topology, ranging from high-bandwidth
NVLink for GPUs within the same host as the innermost layer to
lower-bandwidth cross-node networks as the outer layers. As a
guiding principle, we place the parallelism dimensions with higher
communication demands (i.e. higher communication data volume,
higher communication frequency, and/or communication latency
more difficult to hide) into the inner levels of parallelism:
TP communication: TP involves all-gathering and reduce-scattering
activation or gradient tensors on every linear module. These com-
munications are fully exposed to the critical path and occur four
times in every transformer layer, twice for the attention module
and twice for the feed-forward network (FFN) module.
CP communication: CP involves all-gathering KV tensors or
reduce-scattering the gradients of KV tensors on the inner-attention
module. The communication latency is fully exposed, and it occurs
once in each transformer layer. Although CP has a similar communi-
cation data volume to PP, it involves 𝑐𝑝 ranks in a collective commu-
nication, whereas PP involves P2P between two ranks. Therefore,
CP communication latency is longer due to the synchronization
among CP ranks.
PP communication: PP communicates on every virtual pipeline
stage. There is no synchronization between the two P2P ranks due
to decoupled asynchronous P2P send and receive. When 𝑝𝑝 = 𝑏𝑠 , all
P2P communications are fully exposed. Nevertheless, we prioritize
CP over PP due to the aforementioned reasons when analyzing CP
communication.
DP communication: DP with ZeRO-1/ZeRO-2 communicates
only once per training step, i.e. all-gathering model parameters and
reduce-scattering gradients. Although its communication volume
is comparable to PP, we can potentially hide its communication
latency with forward / backward computation (i.e. all-gathering
parameters overlapped with model forward and reduce-scattering
gradients overlapped with model backward). Thus, we place DP as
the outermost level in 4D parallelism.

Rank 0

Rank 1

Rank 2

Communications Computation or Idle Slow Rank

Rank 3

0 1 2 3

4 5 6 7

TP

CP

Figure 8: Identify slow ranks in process groups.

In summary, considering the communications along every paral-
lelism dimension, we have a parallelism order of [TP, CP, PP, DP]
from the innermost level to the outermost level.

6 Debugging Parallelism at Scale
When scaling up the training of Llama 3 using efficient multi-
dimensional parallelism, debugging performance, memory usage,
and numerical issues becomes a crucial task. We share our debug-
ging process and lessons learnt from this process to facilitate future
research and development.

6.1 Performance: Identifying the Slow Rank
In multi-dimensional parallelism, debugging performance issues
at scale can be challenging, particularly when trying to identify
the root cause of the problem. The interactions between various
parallelisms complicate the process of tracing a slow communica-
tion collective to its root cause. For example, Figure 8 illustrates
a configuration with 8 GPUs and (𝑐𝑝 = 2, 𝑡𝑝 = 4), along with a
stacked performance trace of TP communication collectives for
4 GPUs within a TP group. The trace reveals that Rank 2 is the
slowest rank in this group, as its communication collectives are the
shortest, indicating that other ranks are waiting for Rank 2 to join.
However, it is unclear whether Rank 2 is the bottleneck of the entire
system, as its slowness could be caused by its CP communication
collectives, where its peer rank (Rank 6) in the CP group might be
the actual bottleneck.

To address this challenge, our performance trace analysis em-
ploys a top-down approach, starting from the outermost parallelism
level. As detailed in Section 5.2, our parallelism is ordered as [TP,
CP, PP, DP] from inner to outer levels. We begin by analyzing the
DP groups to identify the slowest one, and then iteratively repeat
this process for PP, CP, and TP groups to narrow down the range
of slow ranks. Once the slow rank is identified, we can examine the
detailed profiling trace of CPU, GPU compute, and GPU commu-
nication to investigate the root cause, whether it be a software or
hardware issue (e.g., a faulty GPU). This method is similar to failure
localization in distributed systems [39, 43], where the problematic
host is not necessarily the first one to crash and report errors. An
automatic tool for analyzing performance traces and identifying
the root cause of the slowest rank would be a valuable asset for
performance debugging in Llama training systems.

6.2 Numerical Issues in 4D Parallelism
The partitioning of training data and model parameters in 4D
parallelism inevitably alters numerical behaviors due to the non-
commutative and non-associative nature of floating-point additions.
The use of low-precision data types, such as BFloat16 (BF16) [13]

8

Scaling Llama 3 Training with Efficient Parallelism Strategies ISCA ’25, June 21–25, 2025, Tokyo, Japan

further exacerbates the issue. Therefore, identifying and mitigating
numerical gaps is crucial to ensure training stability, and it is an
important design goal of the training system.
Distinguishing numerical issues from implementation bugs:
When developing 4D parallelism, it is essential to distinguishwhether
the training loss behaviors are different as a result of numerical is-
sues (e.g., different accumulation orders) or an implementation bug.
The former can be mitigated by a higher precision accumulation
order in certain parallelism implementations, whereas the latter
needs further investigations to fix the root cause. As parallelism
splits computation into chunks and reduces partial results, it can-
not achieve bit-wise matching results as the sequential version. To
distinguish these two different reasons, we adopt an approach to
split the sequential version into the same accumulation order as the
parallel one and check for bit-wise exact matching. For example, we
maintain a 2D parallelism (DP and TP) design with micro-batching
to emulate the accumulation order of PP micro-batching, serving
as a reference baseline to confirm whether numerical gaps are due
to PP implementation bugs or accumulation order differences.
Accumulating gradients in FP32: With the aforementioned de-
bugging process to identify numerical issues, we use FP32 accumu-
lation for gradients and optimizer states to bridge numerical gaps,
while maintaining BF16 formats for model computation and com-
munication. Specifically, we use FP32 for DP group reduce-scatter
of gradients and for accumulating gradients of micro-batches in
PP backwards. This accumulation precision aligns with hardware
units, where GEMM kernels accumulate partial results in FP32 for
two BF16 input matrices. In the backward computation, accumula-
tion occurs along the batch size dimension, where DP splits it into
mini-batches and reduce-scatters gradients, and PP further splits
mini-batches further into micro-batches and accumulates gradients
during PP backwards. In multimodal training, we further cast image
tokens sharded by all the cross-attention layers to FP32 so that the
gradients are reduced across all cross-attention in FP32 precision
during the backward pass.

6.3 Memory Optimizations
When running 4D parallelism in large-scale systems, we find that
4D parallelism itself brings unique opportunities to improve mem-
ory efficiency other than splitting model parameters and input
training data. For example, PP stage only needs forward output
tensor metadata (i.e. tensor shape) to kick-off the backward pass but
conventional PyTorch autograd engine is conservative in releasing
memory with reference counting. To optimize memory usage in
Llama 3 training system, we first profile the memory cost by the
memory snapshot tool [1] to get a detailed memory allocation trace.
Then we either develop a customized autograd operator to save ten-
sor checkpoints during forward, or utilize existing autograd engine
but release underlying tensor data by resizing the tensor storage
manually. We note that these optimizations are helpful in our par-
allelism configurations to eliminate activation recomputation and
avoid increasing PP or TP to fit the training into the memory thus
helping with the training efficiency.

(a) (b)

AllFallB 1F1B Flexible
395

397

399

401

403

405

Schedule

TF
LO

Ps

AllFallB 1F1B Flexible
40

42

44

46

48

50

Schedule

To
ta

l A
llo

ca
te

d
M

em
or

y
/ G

B

Figure 9: (a) Training TFLOPs for all-forward-all-backward,
1F1B, and flexible PP. (b) Max allocated memory usage.

7 Evaluation
In this section, we evaluate PP and CP individually and also assess
the end-to-end performance of 3D and 4D parallelism.

7.1 Pipeline Parallelism
To validate our optimizations, we conduct small-scale experiments
using a scaled-down version of the Llama 3 405B model. Specifically,
we maintain the same model dimensions but reduce the number of
layers, and use a sequence length of 8192 for our experiments.

7.1.1 Training throughput and memory comparison between all-
forward-all-backward, 1F1B, and flexible PP. To compare between
different schedules, we use a shrunk model with 26 layers and
𝑝𝑝 = 4, 𝑏𝑠 = 12. We reduce two layers from 28 to 26 for more
balanced computation, as described in Section 3. The all-forward-all-
backward schedule processes 12 micro-batches at once; while 1F1B
processes 𝑝𝑝 micro-batches in one round and 3 rounds per PP virtual
stage in total. Flexible PP, on the other hand, processes 6 micro-
batches in one round and 2 rounds in total. The results are presented
in Figure 9, which shows the memory usage and TFLOPs achieved
by each schedule. The 1F1B schedule has the lowest memory usage
due to its prioritization of the backward pass, but it achieves the
lowest TFLOPs due to exposed P2P communications. In contrast, the
all-forward-all-backward schedule achieves the highest TFLOPs by
processing more micro-batches to hide exposed P2Ps, but it results
in the highest memory usage. Flexible PP strikes a balance between
memory usage and training throughput.

7.1.2 Balanced and imbalanced pipeline parallelism. In Llama 3
training, we use a vocabulary size of 128K, which leads to a large
embedding module on the first PP rank and a large output module
on the last PP rank. This, in turn, causes computation and memory
imbalances across PP ranks. To mitigate this issue, we remove one
layer from the first and last PP stages, resulting in more balanced
memory allocation across PP ranks and improved training through-
put due to balanced computation. As is shown in Figure 10, this
optimization reduces the maximum allocated memory usage by
5GB and improves TFLOPs by 6.5%. Furthermore, with this opti-
mization, we can turn off activation recomputation [5] in Llama 3
training. For the scaled-down model, balanced PP yields a 17.5%
improvement in TFLOPs by avoiding recomputation.

9

ISCA ’25, June 21–25, 2025, Tokyo, Japan Weiwei Chu, Xinfeng Xie, Jiecao Yu, Jie Wang, et al.

(a) (b)

0 1 2 3 4 5 6 7
35

40

45

50

55

60

PP rank

M
ax

 A
llo

ca
te

d
M

em
or

y
/ G

B No Balance Balance
Max Memory Usage

No Balance
With Recompute

No Balance Balance

100

200

300

400

TF
LO

Ps

Figure 10: (a) Max allocated memory usage across PP ranks
with and without workload balance. (b) Training throughput
with balanced PP.

4096 8192 16384 32768 65536 131072
0

20

40

60

80

100

R
el

at
iv

e
FH

U
 (%

)

CP=2 Causal CP=4 Causal CP=2 Block Causal CP=4 Block Causal

Sequence Length

Figure 11: Relative hardware FLOPs utilization (HFU) over
attention on single GPU.

4096 8192 16384 32768 65536 131072
0

100

200

300

Sequence Length

A
ch

ie
ve

d
A

G
 B

an
dw

id
th

 (G
B

/s
)

CP=4 Causal CP=2 Block Causal CP=4 Block CausalCP=2 Causal

Figure 12: Achieved inter-GPU communication bandwidth
of context parallelism all-gather.

7.2 Context Parallelism
As CP only introduces extra inter-GPU communication in the at-
tention layers, we evaluate the efficiency of the attention layers to
demonstrate the effectiveness and scalability of our CP solution.

We begin by comparing the efficiency and scalability of our CP
solution with state-of-the-art attention kernels on GPU. Specifically,
we use Flash-Attention V2 [7] as our single-GPU baseline and mea-
sure the hardware FLOPs utilization (HFU) [6]. We then normalize
the HFU of CP attention over Flash-Attention on a single GPU.
Since CP introduces communication between GPUs, we expect the
relative HFU to be less than 100%, with higher values indicating
better efficiency of CP attention. We conduct experiments on H100
with HBM2e [26] to assess the scalability of CP attention in a lower
memory bandwidth setup. We anticipate better scalability of CP at-
tention in HBM3, as attention kernels are generally compute-bound,
while the extra element-wise and communication overheads are
typically memory or network bandwidth-bound. We evaluate both
𝑐𝑝 = 2 and 𝑐𝑝 = 4 for different sequence lengths with full causal
masks and block causal masks (i.e., document mask), where the
average document length is 1K. Our results in Figure 11 show that
(1) the relative HFU for longer sequence lengths is higher (up to 95%

4096 8192 16384 32768 65536 131072
0

25

50

75

100

Sequence Length

R
el

at
iv

e
FH

U
 (%

)

CP=4 CP Attn CP=2 TE Attn CP=4 TE AttnCP=2 CP Attn

Figure 13: Relative hardware FLOPs utilization (HFU) com-
parison between context parallel attention (CP Attn) and
TransformerEngine [27] attention (TE Attn).

relative HFUs for 128K sequence length), and (2) CP attention for
block causal masks has a lower relative HFU. The first observation
is consistent with our time complexity analysis in Section 4, which
indicates that the elapsed time of CP communication scales linearly,
while computation scales quadratically with respect to sequence
length. To further understand the second observation, we measure
the achieved network bandwidth of CP all-gather communication
and present the results in Figure 12. The achieved bandwidth of
all-gather is comparable between causal and block causal masks.
This suggests that the lower relative HFU of block causal mask is
due to workload imbalance, where our static sharding of tokens
across CP does not align with document mask boundaries, as shown
in Figure 7.

In addition to the scalability study of CP attention, we conduct ex-
periments comparing our CP solutionwith Transformer Engine [27]
(TE) in a branch prior to initiating Llama 3 pre-training. TE atten-
tion employs a computation-communication overlapped method
similar to RingAttention [21]. Specifically, it splits along the se-
quence length dimension into 2 × 𝑐𝑝 chunks, assigns chunks to CP
ranks to balance computation, iterates through chunks to compute
partial attention results overlapped with P2P communication be-
tween adjacent ranks, and finally merges partial attention output
results. In our forked branch of TE, prior to Llama 3 training, it does
not support variable sequence lengths; therefore we only evaluate
the full causal mask to compare with our CP attention solution. We
conduct experiments on production hardware for Llama 3 training
(i.e., H100 with HBM3), and Figure 13 presents the relative HFU
results. We observe from Figure 13 that TE has a slightly higher
relative HFU for 𝑐𝑝 = 2, but both our CP and TE attention achieve
relative HFU over 95% when the sequence length exceeds 64K. No-
tably, our CP attention consistently outperforms TE attention for
𝑐𝑝 = 4, especially for sequence lengths of 4K and 8K, where we
observe up to 13.53% better relative HFU. The superior performance
of our CP attention can be attributed to the differences in the atten-
tion mechanism. Unlike our CP attention, TE’s ring-style attention
involves 𝑂 (𝑐𝑝) computation kernels, each working on a chunk of
𝑠𝑒𝑞/(2×𝑐𝑝) tokens to compute partial results. When 𝑐𝑝 is large and
sequence length is small, this ring-style attention in TE suffers from
both fragmented compute kernels with lower compute efficiency
and the compute overheads of merging attention partial results.

7.3 End-to-End Performance
Llama 3 405B is trained on up to 16K H100 GPUs, each operating at
700W TDP with 80GB HBM3, using Meta’s Grand Teton AI server

10

Scaling Llama 3 Training with Efficient Parallelism Strategies ISCA ’25, June 21–25, 2025, Tokyo, Japan

(a) (b)

0 2000 4000 6000 8000

0.85

0.90

0.95

1.00

Rank ID

To
ta

l C
om

pu
ta

tio
n

La
te

nc
y

(N
or

m
al

iz
ed

)

0 2000 4000 6000 8000

0.4

0.6

0.8

1.0

Rank ID
To

ta
l F

la
sh

 A
tte

nt
io

n
La

te
nc

y
(N

or
m

al
iz

ed
)

Figure 14: (a) The distribution of total computation time
across all GPUs. (b) The distribution of the total time of
attention kernels across all GPUs.

platform [22]. The setup for 4D parallelism and input batch size for
Llama 3 pre-training with both 8K and 131K sequence lengths on
16K GPUs is detailed in Table 2. With the optimizations discussed
in this paper, we achieve 400 TFLOPs/GPU for 8K sequence length
and 380 TFLOPs/GPU for 131K sequence length. We further analyze
the end-to-end performance and key take-aways for PP and CP
below.

7.3.1 Text model with 3D parallelism. We overlap FSDP’s all-gather
and reduce-scatter with other computation and communications, ex-
posing only the first all-gather and last reduce-scatter. P2P commu-
nications are exposed during the warm-up forward and cool-down
backward phases. Except for the shorter first and last model chunks
due to having fewer transformer layers, forward and backward
passes on regular model chunks are balanced across micro-batches
and across PP stages, achieving a 5% bubble ratio when per data
parallel group 𝑏𝑠 = 2 × 𝑝𝑝 and 12% bubble ratio when 𝑏𝑠 = 𝑝𝑝 .
7.3.2 Long context text model with 4D parallelism. When train-
ing long context text model with 128K sequence length, we enable
𝑐𝑝 = 16 so that each GPU rank still receives 8K sequence length,
similar to the base model with 3D parallelism. We conducted ex-
tensive profiling of long context jobs with 8K GPUs and found that
the exposed latency of CP communication (all-gather in forward
and reduce-scatter in backward) accounts for 7.64% of the total
elapsed time. However, an in-depth analysis reveals that, 65.75%
of CP exposed latency results from waiting for the slowest rank
in the CP group to join the collective. The root cause stems from
workload imbalances across all GPUs due to the document mask
used in Llama 3 training [10], and this workload imbalance issue
worsens with longer sequence length and larger 𝑐𝑝 . Figure 14 (a)
shows the total time of computation kernels across all GPUs, where
the slowest rank spends 1.44× more time on computation than the
fastest rank. Further analysis in Figure 14 (b) reveals that this gap in
total computation time is entirely due to the difference in attention
kernel time across GPUs, indicating that the imbalance caused by
the document mask contributes to the computation imbalance we
observed. Consequently, a large portion of the CP exposed commu-
nication latency is attributed to this imbalance. Note that all parallel
algorithms on CP that overlap CP communication and attention
computation must wait for the slowest CP rank to complete, leaving
an upper-bound of 2.62% end-to-end performance improvement
compared to our all-gather-based CP solution.

8 Recommendations for Future Hardware
Hardware optimizations tailored for large-scale LLM training can
be different from the ones for general AI workloads. Based on our
experience with Llama training, we offer recommendations for
future hardware specifically for LLM training.

8.1 Node level recommendations
For LLMs that require high dimensions of parallelism, achieving
high throughput from a combination of accelerators and hosts is
crucial.
Optimize compute efficiency for a wide range of shapes: It is
not sufficient for a hardware accelerator to provide high compute
throughput only for very large shapes. Parallelisms will reduce the
dimension of GEMMs. For example, PP reduces batch size and CP
shards on sequence length. This can lead to lower arithmetic inten-
sity operations, so it is essential to ensure that sufficient memory
bandwidth is provided relative to compute throughput.
Higher HBM capacity can improve performance: Higher HBM
capacity can increase the feasible hyper-parameter space for multi-
dimensional parallelism, leading to higher overall performance.
For example, sharding less in the tensor dimension leads to higher
memory usage but also reduces TP communication overheads due to
better amortization of communication relative to compute. In Llama
3 small scale experiments on 2K GPUs, we observed approximately
10% end-to-end performance improvement by reducing TP size
from 8 to 4. Higher HBM capacity allows exploring all such options.
However, the actual benefits depend on the model parameters,
hardware platform, and the cluster size.
Ensure sufficient CPU performance: The gen-over-gen perfor-
mance improvement trend is significantly faster for accelerators
than CPUs. Large-scale LLM training for future accelerators can
become CPU-bound for multiple reasons. Scaling to large clusters
leads to smaller GEMM dimensions assigned to each accelerator, as
stated above. Furthermore, model engineers can incorporate com-
plex operations for exploration, leading to a sequence of lightweight
kernels with relatively high host CPU overheads. These can cause
CPU times spent preparing and launching kernels to become com-
parable to accelerator runtimes unless addressed through hardware
and software improvements.
Minimize performance variations and make DVFS determin-
istic: Parallelisms create synchronization among accelerators. If
there are performance variations across different accelerators, the
whole cluster performance will be determined by the slowest one.
Furthermore, if different accelerators slow down at different times
due to transient issues, the slowdown will accumulate due to fine-
grain synchronization across a large number of accelerators in-
volved in the cross product of TP, CP, and PP domains. Therefore,
it is essential to ensure that dynamic voltage frequency scaling
(DVFS) [34] policies are deterministic across accelerators to avoid
transient slowdowns at different times.

8.2 Training cluster level recommendations
To further scale up training, we also need to consider how to connect
nodes with efficient networks and make the best use of power for a
data center.

11

ISCA ’25, June 21–25, 2025, Tokyo, Japan Weiwei Chu, Xinfeng Xie, Jiecao Yu, Jie Wang, et al.

Optimize network hierarchy: Scaling LLM training to 100K or
more accelerators requires an efficient network with multiple levels
of switches. Providing the same network bandwidth at each level
of hierarchy will not be the most cost- or power-efficient design.
Instead, a hierarchical network can be designed where the upper-
level switches have less or oversubscribed bandwidth. It is essential
to consider the requirements of different parallelism dimensions
while determining these network parameters. We recommend co-
designing the network parameters based on the anticipated work-
load requirements, taking into account model hyper-parameter as
well as all dimensions of parallelism.
Ensure robust network performance: A slow down between
two ranks (e.g., due to congestion or packet loss) can affect the
whole cluster performance due to fine-grain parallelism across a
large set of accelerators involved in TP, CP, PP and DP communi-
cation. We need to ensure that the entire network operates at a
consistent performance without transient slowdowns.
Prioritize power efficiency: It has been reported that future LLM
training clusters are trending toward 100K GPUs or potentially
more [32]. These large clusters are constrained by the total amount
of power available in a data center region rather than the number
of AI accelerators that can be procured. Therefore, an accelerator’s
effective performance per unit of power consumption (Perf/Watt)
is as important as, or even more important than, its absolute per-
formance.

9 Conclusion
This paper presents the details of the training system for Llama 3
text and multimodal pre-training. We adopt 4D parallelism in this
system to scale out across up to 16K GPUs and apply numerous op-
timizations to achieve high efficiency under batch size constraints.
Our system is designed to be highly flexible, supporting dynamic
workloads for different training phases and heterogeneous model
architectures. Additionally, we provide a methodology for debug-
ging performance and numerical issues at large scale. Drawing
from our experience with Llama 3 training, we offer suggestions for
future training node and cluster design. While efficient Llama train-
ing requires a holistic co-design of model architectures, learning
algorithms, and training infrastructure (e.g. fault tolerance) beyond
4D parallelism, we hope that the details and insights shared in this
paper will shed light on the directions of future model development
and software-hardware co-design.

References
[1] Zachary DeVito Aaron Shi. 2023. Understanding GPU Memory 1: Visualizing All

Allocations over Time. https://pytorch.org/blog/understanding-gpu-memory-1/
[2] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana

Hasson, Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds,
Roman Ring, Eliza Rutherford, Serkan Cabi, Tengda Han, Zhitao Gong,
Sina Samangooei, Marianne Monteiro, Jacob L Menick, Sebastian Borgeaud,
Andy Brock, Aida Nematzadeh, Sahand Sharifzadeh, Mikoł aj Bińkowski,
Ricardo Barreira, Oriol Vinyals, Andrew Zisserman, and Karén Simonyan.
2022. Flamingo: a Visual Language Model for Few-Shot Learning. In Ad-
vances in Neural Information Processing Systems, S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh (Eds.), Vol. 35. Curran Associates,
Inc., 23716–23736. https://proceedings.neurips.cc/paper_files/paper/2022/file/
960a172bc7fbf0177ccccbb411a7d800-Paper-Conference.pdf

[3] Anthropic. 2024. Introducing the next generation of Claude. https://www.
anthropic.com/news/claude-3-family

[4] Jinze Bai, Shuai Bai, Shusheng Yang, ShijieWang, Sinan Tan, PengWang, Junyang
Lin, Chang Zhou, and Jingren Zhou. 2023. Qwen-vl: A frontier large vision-
language model with versatile abilities. arXiv preprint arXiv:2308.12966 (2023).

[5] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. 2016. Training deep
nets with sublinear memory cost. arXiv preprint arXiv:1604.06174 (2016).

[6] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Se-
bastian Gehrmann, Parker Schuh, Kensen Shi, Sashank Tsvyashchenko, Joshua
Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prab-
hakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James Bradbury,
Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm
Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Gar-
cia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito,
David Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepa-
ssi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M. Dai, Thanu-
malayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang,
Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-
Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. 2024. PaLM:
scaling language modeling with pathways. J. Mach. Learn. Res. 24, 1, Article 240
(March 2024), 113 pages.

[7] Tri Dao. 2024. FlashAttention-2: Faster Attention with Better Parallelism and
Work Partitioning. In International Conference on Learning Representations (ICLR).

[8] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. 2022.
FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness.
In Advances in Neural Information Processing Systems (NeurIPS).

[9] DeepSeek-AI. 2024. DeepSeek-V3 Technical Report. arXiv preprint
arXiv:2412.19437 (2024).

[10] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Ab-
hishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo
Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun
Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste
Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya
Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe
Touret, Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis,
Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt,
David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego
Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,
Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco Guzmán, Frank
Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen,
Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra,
Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon
Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer
van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi,
Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo
Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasu-
den Alwala, Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth
Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley
Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren Rantala-Yeary, Laurens van der
Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan,
Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsim-
poukelli, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike
Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes Torabi,
Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang, Olivier
Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Va-
sic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh
Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy,
Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Ro-
han Maheswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro,
Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini,
Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey
Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye
Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer
Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky,
Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom,
Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami,
Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie
Do, Vish Vogeti, Vítor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong,
Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang Wang,
Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, XueweiWang, Yaelle Gold-
schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue
Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe
Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam
Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon,
Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein, Amanda Kallet,

12

https://pytorch.org/blog/understanding-gpu-memory-1/
https://proceedings.neurips.cc/paper_files/paper/2022/file/960a172bc7fbf0177ccccbb411a7d800-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/960a172bc7fbf0177ccccbb411a7d800-Paper-Conference.pdf
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family

Scaling Llama 3 Training with Efficient Parallelism Strategies ISCA ’25, June 21–25, 2025, Tokyo, Japan

Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew
Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ram-
chandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu
Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan,
Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De
Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram
Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl
Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim,
Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph
Feichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel
Li, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana
Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowl-
ing, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood,
Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei
Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Cag-
gioni, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz,
Gada Badeer, Georgia Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi,
Zhang, Guna Lakshminarayanan, Hakan Inan, Hamid Shojanazeri, Han Zou, Han-
nah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry
Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj, Igor Molybog,
Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James
Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus,
Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica
Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan
McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U,
Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik
Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang, Kunal
Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee
Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt,
Madian Khabsa, Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Has-
son, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya
Lathi, Meghan Keneally, Miao Liu, Michael L. Seltzer, Michal Valko, Michelle
Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike
Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari,
Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navy-
ata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Niko-
lay Pavlovich Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia Hart,
Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan
Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyag-
ina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel
Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Ran-
gaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky
Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu,
Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru
Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy,
Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang,
Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen,
Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Summer
Deng, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney
Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robin-
son, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook Shaked,
Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish
Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu,
Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will
Constable, Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao,
Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying
Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian,
Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen,
Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. 2024. The Llama 3 Herd of Models.
arXiv:2407.21783 [cs.AI] https://arxiv.org/abs/2407.21783

[11] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Mia Xu Chen, Dehao
Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng
Chen. 2019. GPipe: Efficient Training of Giant Neural Networks using Pipeline
Parallelism. arXiv:1811.06965 [cs.CV] https://arxiv.org/abs/1811.06965

[12] Ziheng Jiang, Haibin Lin, Yinmin Zhong, Qi Huang, Yangrui Chen, Zhi Zhang,
Yanghua Peng, Xiang Li, Cong Xie, Shibiao Nong, Yulu Jia, Sun He, Hongmin
Chen, Zhihao Bai, Qi Hou, Shipeng Yan, Ding Zhou, Yiyao Sheng, Zhuo Jiang,
Haohan Xu, Haoran Wei, Zhang Zhang, Pengfei Nie, Leqi Zou, Sida Zhao, Liang
Xiang, Zherui Liu, Zhe Li, Xiaoying Jia, Jianxi Ye, Xin Jin, and Xin Liu. 2025.
MegaScale: Scaling Large Language Model Training to More Than 10,000 GPUs.
In Proceedings of the 21st USENIX Symposium on Networked Systems Design and
Implementation (Santa Clara, CA, USA) (NSDI’24). USENIX Association, USA,
Article 41, 16 pages.

[13] Dhiraj Kalamkar, Dheevatsa Mudigere, Naveen Mellempudi, Dipankar Das, Kunal
Banerjee, Sasikanth Avancha, Dharma Teja Vooturi, Nataraj Jammalamadaka,
Jianyu Huang, Hector Yuen, Jiyan Yang, Jongsoo Park, Alexander Heinecke,
Evangelos Georganas, Sudarshan Srinivasan, Abhisek Kundu, Misha Smelyanskiy,

Bharat Kaul, and Pradeep Dubey. 2019. A Study of BFLOAT16 for Deep Learning
Training. (2019). arXiv:1905.12322 [cs.LG] https://arxiv.org/abs/1905.12322

[14] Vijay Korthikanti, Jared Casper, Sangkug Lym, Lawrence McAfee, Michael An-
dersch, Mohammad Shoeybi, and Bryan Catanzaro. 2022. Reducing Activa-
tion Recomputation in Large Transformer Models. arXiv:2205.05198 [cs.LG]
https://arxiv.org/abs/2205.05198

[15] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. ImageNet Clas-
sification with Deep Convolutional Neural Networks. In Advances in Neural
Information Processing Systems, F. Pereira, C.J. Burges, L. Bottou, and K.Q. Wein-
berger (Eds.), Vol. 25. Curran Associates, Inc. https://proceedings.neurips.cc/
paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

[16] Joel Lamy-Poirier. 2023. Breadth-First Pipeline Parallelism.
arXiv:2211.05953 [cs.DC] https://arxiv.org/abs/2211.05953

[17] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li,
Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania, and Soumith Chintala.
2020. PyTorch Distributed: Experiences on Accelerating Data Parallel Training.
(2020). arXiv:2006.15704 [cs.DC] https://arxiv.org/abs/2006.15704

[18] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi
Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas
Hubert, Peter Choy, Cyprien deMasson d’Autume, Igor Babuschkin, XinyunChen,
Po-Sen Huang, Johannes Welbl, Sven Gowal, Alexey Cherepanov, James Molloy,
Daniel J. Mankowitz, Esme Sutherland Robson, Pushmeet Kohli, Nando de Freitas,
Koray Kavukcuoglu, and Oriol Vinyals. 2022. Competition-level code generation
with AlphaCode. Science 378, 6624 (2022), 1092–1097. https://doi.org/10.1126/
science.abq1158 arXiv:https://www.science.org/doi/pdf/10.1126/science.abq1158

[19] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. 2024. Visual instruc-
tion tuning. Advances in neural information processing systems 36 (2024).

[20] Hao Liu, Matei Zaharia, and Pieter Abbeel. 2023. Ring Attention with Blockwise
Transformers for Near-Infinite Context. arXiv:2310.01889 [cs.CL] https://arxiv.
org/abs/2310.01889

[21] Hao Liu, Matei Zaharia, and Pieter Abbeel. 2023. Ring Attention with Blockwise
Transformers for Near-Infinite Context. arXiv:2310.01889 [cs.CL] https://arxiv.
org/abs/2310.01889

[22] Meta. 2022. Meta open compute project, grand teton ai platform. https:
//engineering.fb.com/2022/10/18/open-source/ocp-summit-2022-grand-teton

[23] Meta. 2024. Introducing Llama 3.1: Our most capable models to date. https:
//ai.meta.com/blog/meta-llama-3-1/

[24] Meta. 2024. Introducing Meta Llama 3: The most capable openly available LLM to
date. https://ai.meta.com/blog/meta-llama-3/

[25] Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGres-
ley, Mostofa Patwary, Vijay Anand Korthikanti, Dmitri Vainbrand, Prethvi
Kashinkunti, Julie Bernauer, Bryan Catanzaro, Amar Phanishayee, and Matei
Zaharia. 2021. Efficient Large-Scale Language Model Training on GPU Clusters
Using Megatron-LM. In International Conference for High Performance Computing,
Networking, Storage and Analysis, SC 2021, St. Louis, Missouri, USA, November
14-19, 2021. ACM. https://arxiv.org/abs/2104.04473

[26] NVIDIA. 2022. NVIDIA Hopper Architecture In-Depth. https://developer.nvidia.
com/blog/nvidia-hopper-architecture-in-depth/

[27] NVIDIA. 2024. NVIDIA TransformerEngine. https://github.com/NVIDIA/
TransformerEngine

[28] OpenAI. 2022. Introducing ChatGPT. https://openai.com/index/chatgpt/
[29] Qwen Team. 2024. Qwen2.5 Technical Report. arXiv preprint arXiv:2412.15115

(2024).
[30] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. 2020.

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models.
arXiv:1910.02054 [cs.LG] https://arxiv.org/abs/1910.02054

[31] Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase,
Shuangyan Yang, Minjia Zhang, Dong Li, and Yuxiong He. 2021. ZeRO-
Offload: Democratizing Billion-Scale Model Training. arXiv:2101.06840 [cs.DC]
https://arxiv.org/abs/2101.06840

[32] SemiAnalysis. 2025. 100,000 H100 Clusters: Power, Network Topology, Ethernet
vs InfiniBand, Reliability, Failures, Checkpointing. https://semianalysis.com/
2024/06/17/100000-h100-clusters-power-network/

[33] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper,
and Bryan Catanzaro. 2020. Megatron-LM: Training Multi-Billion Parameter
Language Models Using Model Parallelism. arXiv:1909.08053 [cs.CL] https:
//arxiv.org/abs/1909.08053

[34] Zhenheng Tang, Yuxin Wang, Qiang Wang, and Xiaowen Chu. 2019. The Impact
of GPU DVFS on the Energy and Performance of Deep Learning: an Empirical
Study. In Proceedings of the Tenth ACM International Conference on Future Energy
Systems. 315–325.

[35] Jakub Tarnawski, Deepak Narayanan, and Amar Phanishayee. 2021. Piper: Multi-
dimensional Planner for DNN Parallelization. In Advances in Neural Information
Processing Systems 34: Annual Conference on Neural Information Processing Systems
2021, NeurIPS 2021, December 6-14, 2021, virtual. 24829–24840.

[36] Team Gemini. 2023. Gemini: A Family of Highly Capable Multimodal Models.
arXiv preprint arXiv:2312.11805 (2023).

13

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/1811.06965
https://arxiv.org/abs/1811.06965
https://arxiv.org/abs/1905.12322
https://arxiv.org/abs/1905.12322
https://arxiv.org/abs/2205.05198
https://arxiv.org/abs/2205.05198
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://arxiv.org/abs/2211.05953
https://arxiv.org/abs/2211.05953
https://arxiv.org/abs/2006.15704
https://arxiv.org/abs/2006.15704
https://doi.org/10.1126/science.abq1158
https://doi.org/10.1126/science.abq1158
https://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.abq1158
https://arxiv.org/abs/2310.01889
https://arxiv.org/abs/2310.01889
https://arxiv.org/abs/2310.01889
https://arxiv.org/abs/2310.01889
https://arxiv.org/abs/2310.01889
https://arxiv.org/abs/2310.01889
https://engineering.fb.com/2022/10/18/open-source/ocp-summit-2022-grand-teton
https://engineering.fb.com/2022/10/18/open-source/ocp-summit-2022-grand-teton
https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3/
https://arxiv.org/abs/2104.04473
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
https://github.com/NVIDIA/TransformerEngine
https://github.com/NVIDIA/TransformerEngine
https://openai.com/index/chatgpt/
https://arxiv.org/abs/1910.02054
https://arxiv.org/abs/1910.02054
https://arxiv.org/abs/2101.06840
https://arxiv.org/abs/2101.06840
https://semianalysis.com/2024/06/17/100000-h100-clusters-power-network/
https://semianalysis.com/2024/06/17/100000-h100-clusters-power-network/
https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/1909.08053

ISCA ’25, June 21–25, 2025, Tokyo, Japan Weiwei Chu, Xinfeng Xie, Jiecao Yu, Jie Wang, et al.

[37] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lam-
ple. 2023. LLaMA: Open and Efficient Foundation Language Models. (2023).
arXiv:2302.13971 [cs.CL] https://arxiv.org/abs/2302.13971

[38] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucu-
rull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia
Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini,
Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet,
Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton,
Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva,
Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross
Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov,
Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. 2023. Llama
2: Open Foundation and Fine-Tuned Chat Models. arXiv:2307.09288 [cs.CL]
https://arxiv.org/abs/2307.09288

[39] W Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. A
survey on software fault localization. IEEE Transactions on Software Engineering
42, 8 (2016), 707–740.

[40] Zhiyu Wu, Xiaokang Chen, Zizheng Pan, Xingchao Liu, Wen Liu, Damai Dai,
Huazuo Gao, YiyangMa, ChengyueWu, BingxuanWang, Zhenda Xie, YuWu, Kai
Hu, Jiawei Wang, Yaofeng Sun, Yukun Li, Yishi Piao, Kang Guan, Aixin Liu, Xin
Xie, Yuxiang You, Kai Dong, Xingkai Yu, Haowei Zhang, Liang Zhao, YisongWang,

and Chong Ruan. 2024. DeepSeek-VL2:Mixture-of-Experts Vision-LanguageMod-
els for Advanced Multimodal Understanding. (2024). arXiv:2412.10302 [cs.CV]
https://arxiv.org/abs/2412.10302

[41] Wenhan Xiong, Jingyu Liu, Igor Molybog, Hejia Zhang, Prajjwal Bhargava, Rui
Hou, Louis Martin, Rashi Rungta, Karthik Abinav Sankararaman, Barlas Oguz,
Madian Khabsa, Han Fang, Yashar Mehdad, Sharan Narang, Kshitiz Malik, Angela
Fan, Shruti Bhosale, Sergey Edunov, Mike Lewis, SinongWang, and Hao Ma. 2023.
Effective Long-Context Scaling of Foundation Models. arXiv:2309.16039 [cs.CL]
https://arxiv.org/abs/2309.16039

[42] Hu Xu, Saining Xie, Xiaoqing Ellen Tan, Po-Yao Huang, Russell Howes, Vasu
Sharma, Shang-Wen Li, Gargi Ghosh, Luke Zettlemoyer, and Christoph Feichten-
hofer. 2023. Demystifying clip data. arXiv preprint arXiv:2309.16671 (2023).

[43] Yongle Zhang, Kirk Rodrigues, Yu Luo, Michael Stumm, and Ding Yuan. 2019.
The inflection point hypothesis: a principled debugging approach for locating the
root cause of a failure. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles. 131–146.

[44] Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu,
Less Wright, Hamid Shojanazeri, Myle Ott, Sam Shleifer, Alban Desmaison, Can
Balioglu, Pritam Damania, Bernard Nguyen, Geeta Chauhan, Yuchen Hao, Ajit
Mathews, and Shen Li. 2023. PyTorch FSDP: Experiences on Scaling Fully Sharded
Data Parallel. arXiv:2304.11277 [cs.DC] https://arxiv.org/abs/2304.11277

[45] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng Chen, Yan-
ping Huang, Yida Wang, Yuanzhong Xu, Danyang Zhuo, Eric P. Xing, Joseph E.
Gonzalez, and Ion Stoica. 2022. Alpa: Automating Inter- and Intra-Operator Par-
allelism for Distributed Deep Learning. In 16th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2022, Carlsbad, CA, USA, July 11-13,
2022. USENIX Association, 559–578.

14

https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2412.10302
https://arxiv.org/abs/2412.10302
https://arxiv.org/abs/2309.16039
https://arxiv.org/abs/2309.16039
https://arxiv.org/abs/2304.11277
https://arxiv.org/abs/2304.11277

	Abstract
	1 Introduction
	2 Background
	2.1 4D Parallelism
	2.2 Llama 3 Pre-training Overview

	3 Pipeline Parallelism
	3.1 Design Overview
	3.2 Case Study: Multimodal Training

	4 Context Parallelism
	5 4D Parallelism for Llama 3
	5.1 The Size of Parallelism Dimensions
	5.2 The Order of Parallelism Dimensions

	6 Debugging Parallelism at Scale
	6.1 Performance: Identifying the Slow Rank
	6.2 Numerical Issues in 4D Parallelism
	6.3 Memory Optimizations

	7 Evaluation
	7.1 Pipeline Parallelism
	7.2 Context Parallelism
	7.3 End-to-End Performance

	8 Recommendations for Future Hardware
	8.1 Node level recommendations
	8.2 Training cluster level recommendations

	9 Conclusion
	References

