
DCPerf: An Open-Source, Battle-Tested Performance
Benchmark Suite for Datacenter Workloads

Wei Su, Abhishek Dhanotia, Carlos Torres, Jayneel Gandhi
Neha Gholkar, Shobhit Kanaujia, Maxim Naumov, Kalyan Subramanian

Valentin Andrei, Yifan Yuan, Chunqiang Tang
Meta Platforms
Menlo Park, USA

Abstract
We present DCPerf, the first open-source performance benchmark
suite actively used to inform procurement decisions for millions of
CPU in hyperscale datacenters. Although numerous benchmarks
exist, our evaluation reveals that they inaccurately project server
performance for datacenter workloads or fail to scale to resemble
production workloads on modern many-core servers. DCPerf dis-
tinguishes itself in two aspects: (1) it faithfully models essential
software architectures and features of datacenter applications, such
as microservice architecture and highly optimized multi-process or
multi-thread concurrency; and (2) it strives to align its performance
characteristics with those of production workloads, at both the
system level and microarchitecture level. Both are made possible
by our direct access to the source code and hyperscale produc-
tion deployments of datacenter workloads. Additionally, we share
real-world examples of using DCPerf in critical decision-making,
such as selecting future CPU SKUs and guiding CPU vendors in
optimizing their designs. Our evaluation demonstrates that DCPerf
accurately projects the performance of representative production
workloads within a 3.3% error margin across four generations of
production servers introduced over a span of six years, with core
counts varying widely from 36 to 176.

CCS Concepts
• Computer systems organization → Architectures; Cloud
computing; • Software and its engineering → Software archi-
tectures; • General and reference → Performance.
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1 Introduction
Datacenter CPUs represent a significant and rapidly expanding
market, projected to grow from $12.8 billion in 2024 to $48.9 bil-
lion by 2033 [8]. At Meta, we operate a hyperscale fleet of mil-
lions of servers. Organizations of all sizes—from hyperscalers like
Meta to smaller datacenter operators and public cloud customers—
universally rely on performance benchmarks to select the most
cost-effective CPUs. On the supply side, CPU vendors also depend
on benchmarks to guide CPU designs and optimizations.

To address these needs, the industry and research community
have developed a wide variety of benchmarks. However, develop-
ing benchmarks for datacenter workloads presents challenges that
prior work has not sufficiently addressed. Below, we outline the
challenges and our approach to addressing them in DCPerf [9],
Meta’s open-source benchmark suite for datacenter workloads.

The first challenge is that the high complexity of datacenter
workloads makes them difficult to model accurately. Specifically,
Meta operates thousands of services interconnected by an intricate
RPC call graph [21], and the largest service (i.e., the frontend web
application for Facebook) comprises millions of lines of code, re-
ceives code contributions from over ten thousand engineers, and
undergoes thousands of code changes daily.

Our evaluation shows that existing benchmarks fail to accurately
represent these complex datacenter workloads. For instance, per-
formance projections based on SPEC CPU 2017 [4] overestimate
the performance of Meta’s latest server SKU by 28% compared to
its actual performance on our production workloads. This disparity
is unsurprising, as SPEC CPU was designed to represent single-
process, computation-intensive workloads, rather than capture com-
plex, distributed datacenter workloads. While some benchmarks
like CloudSuite [11] were designed to model datacenter workloads,
their unoptimized implementations for modern processors limit
their representativeness. For example, evaluations on our produc-
tion servers with 176 cores reveal that CloudSuite’s benchmark for
in-memory analytics fails to drive CPU utilization above 20% due
to its limited scalability on modern servers with many cores.

To accurately model datacenter workloads, we identify the pri-
mary workload categories that account for the majority of our fleet
capacity and create simplified benchmarks to model each category.
Some workload categories are common across the industry, such
as web applications, data caching, big-data processing, and video
encoding, while others target social-network workloads, such as
newsfeed ranking.

Compared to other benchmark developers, we have two unique
advantages. First, as we have direct access to both the source code
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and production deployments of datacenter workloads, we can en-
sure that the software architecture of DCPerf’s benchmarks closely
resembles the production workloads and periodically calibrate their
performance to align with that of the production workloads. Second,
we regularly use DCPerf to drive decisions in procuring millions
of CPUs and guide CPU vendors in optimizing their designs. This
regular exercise provides valuable feedback for improving DCPerf.
In contrast, many past benchmarks have become outdated due to
the absence of a strong mandate for continuous improvement.

The second challenge in developing benchmarks for datacenter
workloads is that it is insufficient for a benchmark to simply achieve
performance similar to the real-world application it models at the
macro level in terms of throughput, latency, and CPU utilization. In-
stead, its performance characteristics at the microarchitecture level
must also be sufficiently close. Otherwise, even if their performance
is similar for the current generation of CPUs, as the next-generation
CPU evolves with a different microarchitecture, performance may
diverge significantly.

The key microarchitecture-level performance characteristics in-
clude: (1) instructions per cycle (IPC); (2) cachemiss rates; (3) branch
misprediction; (4) memory bandwidth usage; (5) effective CPU fre-
quency; (6) overall power consumption and its breakdown across
various CPU and server components; (7) instruction stall causes;
(8) CPU cycles spent in the OS kernel and user space; and (9) CPU
cycles spent in application logic and “datacenter tax” [23], such as
libraries for RPC and compression.

To address these complexities, we devise a holistic approach to
evaluate benchmark fidelity against productionworkloads across all
aforementioned aspects. We then iteratively refine the benchmarks
to reduce performance gaps relative to production workloads.

We make the following contributions in this paper.
Novelty : We develop a comprehensive approach to (1) faithfully
modeling key software features of production workloads, such as
highly optimized multi-process or multi-thread concurrency, and
(2) measuring and improving benchmark fidelity against produc-
tion workloads across a broad range of microarchitecture metrics.
This novel combination is made possible by our direct access to the
source code and production deployments of datacenter workloads.
This approach enables the creation of benchmarks that accurately
reflect real-world applications with millions of lines of code, within
a 3.3% error margin. To our knowledge, this level of comprehen-
siveness and accuracy has not been reported previously.
Impact : Over the past three years, DCPerf has served as Meta’s
primary tool to inform CPU selection across x86 and ARM, influ-
encing procurement decisions for millions of CPUs. Additionally, it
has guided CPU vendors in optimizing their products effectively.
For instance, in 2023, it enabled a CPU vendor to implement approx-
imately 10 microarchitecture optimizations, resulting in an overall
38% performance improvement for our web application that runs
on more than half a million servers. Finally, by making DCPerf
open-source [9], we hope to inspire industry peers to also share
their benchmarks, such as those for search and e-commerce.
Experiences : We share real-world examples of using DCPerf in
critical decision-making, such as selecting future CPU SKUs and
guiding CPU vendors in optimizing their designs. These kinds

of experiences are rarely reported in research literature but offer
valuable insights and motivation for future research.
Broad Usage: Although this paper focuses on applying DCPerf to
CPU selection and optimization due to space constraints, DCPerf,
as a general-purpose benchmark suite for datacenter applications,
can help evaluate performance improvements or regressions in
common software components it utilizes, including compilers, run-
times (e.g., PHP/HHVM and Python/Django), common libraries (e.g.
Thrift and Folly), Memcache, Spark, or the OS kernel. For instance,
Section 5.3 demonstrates how DCPerf helps identify scalability
bottlenecks in the Linux kernel. Furthermore, DCPerf can help
assess the effectiveness of a wide range of research ideas, such
as resource allocation, resource isolation, performance modeling,
performance optimization, fault diagnosis, and power management.
These use cases are similar to existing full-application benchmarks
like RUBiS [5, 33], TPC-W[27], and BigDataBench[43], but with the
added advantage that DCPerf is well-calibrated with production
datacenter workloads.

2 Requirements and Design Considerations
Before delving into the design of DCPerf and its benchmarks, we
first outline the requirements and key design considerations.

2.1 Easily Deployable Outside Meta
While DCPerf is designed to accurately model Meta’s production
workloads, a key requirement is that CPU vendors can indepen-
dently set up and run DCPerf without dependence on Meta’s pro-
duction environment. This independence enables CPU vendors to
optimize the CPU’s design, microcode, firmware, and configuration
during the early stages of CPU development, even before Meta
has access to any CPU samples. Although Meta has a performance
testing platform [6] capable of running production code and identi-
fying minor performance differences, it is unsuitable for external
use due to its dependencies on Meta’s production environment.

Moreover, although DCPerf is designed to model datacenter
applications often running at large scale, to make it practical for
developers outside Meta to use, it must operate on just one or a
few servers without requiring a large-scale setup. In most cases,
its benchmarks need only a single server to run. For benchmarks
deployed as distributed systems, where the primary component
running on one server depends on auxiliary components running
on two or three other servers, only the primary component’s perfor-
mance is assessed. This component must be deployed on the server
being evaluated, while auxiliary components can be deployed on
any server. Overall, we have designed DCPerf to require only a
few servers and streamlined the benchmarking process into three
simple steps: clone the repository, build, and run the benchmarks.

2.2 High Fidelity with Production Workloads
In the past, some benchmarks were designed to mimic the func-
tionality of real-world applications but did not faithfully replicate
their software architectures or traffic patterns due to a lack of ac-
cess to proprietary information. For instance, RUBiS [5, 33] and
TPC-W [27] mimic an auction site and an e-commerce site, respec-
tively, and are widely used in performance studies. However, we
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consider such benchmarks insufficient, as they cannot accurately
project the modeled application’s performance on new CPUs.

In contrast, the DCPerf benchmark’s software architectures and
traffic patterns closely resemble those of the production workloads
they model. For example, while many caching benchmarks imple-
ment a look-aside cache, DCPerf uses a read-through cache because
our production systems employ it to simplify application logic.
Moreover, we model the “datacenter tax” [23] associated with RPC,
compression, and various libraries used in production. We also
ensure that the benchmark’s threading model matches that of the
production system, e.g., using separate thread pools to handle fast
and slow code paths depending on factors such as cache hits. On
machines with many CPU cores, the benchmark spawns multiple
instances to model the production system’s multi-tenancy setup
and ensure scalability. In contrast, insufficient scalability on many-
core machines is a key limitation of CloudSuite [11]. Finally, the
benchmark enforces the same service level objectives (SLOs) used in
production, such as maximizing throughput while maintaining the
95th-percentile latency under 500ms for our newsfeed benchmark.

In addition to software architecture, DCPerf generates traffic
patterns or uses datasets that represent production systems. For
example, the distribution of request and response sizes is replicated
from production systems. In the benchmark for big-data processing,
the dataset is scaled down compared to the production dataset, but
we ensure that each server processes an amount of data similar to
that in production, and the dataset retains features such as table
schema, data types, cardinality, and the number of distinct values.

Moreover, while prior benchmarks often focus on application-
level performance, DCPerf strives to ensure characteristics aligned
at the microarchitecture level (e.g., IPC, cache misses, and instruc-
tion stall causes). To achieve this, DCPerf collects detailed statistics
during each benchmarking run and analyzes them afterward. Fur-
thermore, as the set of microarchitecture features evolves over time,
DCPerf adopts an extensible framework that facilitates the easy ad-
dition of new features. This approach is preferred over hardcoding
these features into DCPerf’s core implementation, ensuring that the
benchmark remains adaptable and scalable as new requirements
emerge.

2.3 Balancing Performance and Power
Prior benchmarks often focus on performance, typically measured
as throughput under the constraint of meeting SLOs such as latency
and error rates. However, power capacity has always been a key
limiting factor in datacenters. As organizations race toward artificial
general intelligence (AGI), the shortage of datacenter power has
become more urgent than ever. Consequently, DCPerf must help
evaluate the trade-offs among power, performance, and total cost
of ownership (TCO), rather than focusing solely on performance.

CPU thermal design power (TDP) represents the worst-case
power consumption under maximum load. However, reserving
datacenter power based on TDP is inefficient. In practice, most
application’s instruction mix cannot push the CPU to its TDP, even
at 100% utilization. Furthermore, they are typically restricted from
running near full CPU utilization to avoid violating SLOs. Therefore,
for server deployment and capacity modeling, we use budgeted
power, which reflects power consumption under high but practical

loads. This situation typically arises when some servers must handle
a load spike due to another datacenter region failing entirely.

TCO consists of two components: capital expenditures (Capex)
and operating expenses (Opex). Capex covers the purchase of phys-
ical hardware. Opex represents the ongoing costs required to keep
servers operational, such as expenses for power and maintenance.

DCPerf is designed to capture both performance per unit of
power consumption (Perf/Watt) and performance per TCO (Perf/$).
While higher values of both metrics are preferred, they are not
always aligned. For instance, CPU 𝑋 may offer higher Perf/Watt
but lower Perf/$, whereas CPU 𝑌 may have lower Perf/Watt but
higher Perf/$. The decision depends on business priorities. For
example, even though CPU 𝑋 incurs a higher TCO, it might be
preferred if its power efficiency enables the installation of more AI
servers in a power-constrained datacenter, potentially delivering
substantial business value. To help evaluate the trade-off between
Perf/Watt and Perf/$, DCPerf records detailed statistics on CPU
clock frequency and power consumption during benchmarking.

3 DCPerf Framework and Benchmarks
In this section, we present the DCPerf framework and the current
set of benchmarks included in DCPerf.

Meta – AMD Confidential

HooksRepresentative Applications

TaoBench

FeedSim

DjangoBench

Mediawiki
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VideoTranscode

Microbenchmarks for Datacenter Taxes
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CPUFreq
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……

DCPerf Automation Framework

FBThrift zstd ……

Figure 1: DCPerf software architecture.

3.1 DCPerf Overview
Figure 1 illustrates the overall architecture of DCPerf. We explain
its components below.
Automation framework. To simplify the usage of DCPerf, the
automation framework provides high-level commands such as
install and run to install and run benchmarks without requiring
the user to deal with the complexity of building the benchmarks or
managing software dependencies.
Result reporting. After a benchmark run finishes, DCPerf reports
the benchmark parameters and results, along with key informa-
tion about the system being tested (e.g., CPU model, memory size,
and kernel version). In addition to application performance met-
rics, such as throughput, DCPerf also reports a per-benchmark
normalized score representing the performance of the machine be-
ing tested relative to a known baseline machine. After running all
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Workload Web Ranking Data Caching Big Data Media Processing
Benchmarks
in DCPerf

MediaWiki
DjangoBench

FeedSim TaoBench SparkBench VideoTranscode

Performance
metrics

Peak RPS
RPS under
latency SLO

Peak RPS and
cache hit rate

Throughput Throughput

Req. proc. time Seconds Seconds Milliseconds Minutes Minutes
Peak CPU util. 90-100% 50-70% 80% 60-80% 95-100%
Thread-to-core

ratio
N(100) N(10) N(10) N(1) N(1)

Per-server RPS N(1K) N(100) N(1M) N(10) N(10)
RPC fanout N(100) N(10) N(10) N(10) 0
Instructions
per request

N(1B) N(10B) N(1K) N(10B) N(1M)

Table 1: Workloads modeled in DCPerf. 𝑁 (𝑛) means a quan-
tity of the same order of magnitude as 𝑛. Acronyms: Requests
Per Second (RPS) and Remote Procedure Call (RPC).

benchmarks, DCPerf reports the overall score, which is the geomet-
ric mean of all benchmark’s scores. Individual benchmark results
are stored in JSON format, allowing automation scripts to process
them further.
Extensibility. DCPerf is designed as an extensible framework
through plugins called hooks. New hooks for monitoring additional
performance metrics can be easily added. Currently, the hooks
support the following metrics:
• CPU utilization: both total CPU utilization and breakdowns, such
as the percentage of cycles spent in user space, kernel and IRQs.

• Memory utilization: memory and swap space usage.
• Network traffic in bytes per second and packets per second.
• CPU core frequency as reported in sysfs.
• Power consumption reported by sensors on the motherboard.
• Top-down microarchitecture metrics: front-end stalls, backend
stalls, incorrect speculations, and retiring instructions.

• Detailed microarchitecture metrics: IPC, memory bandwidth us-
age, cache misses, etc.

In addition to hooks for collecting performance data, DCPerf also
supports the addition of hooks to facilitate benchmark execution,
reporting, and automation. For example, the CopyMove hook can
copy or move files, such as logs containing time-series performance
data, into a separate folder for each benchmark run, ensuring long-
term data preservation and enabling post-analysis.
Client-server architecture. Each benchmark is designed as a
client-server application. The server component mimics a produc-
tion workload, while the client component, potentially running on
a different machine, sends requests to stress-test the server compo-
nent via the Thrift [38] RPC protocol. This emulates not only the
communication pattern in production, but also the RPC “datacenter
tax” [15, 23], which consumes a significant amount of CPU cycles
and memory.

3.2 DCPerf Benchmarks
We classifyMeta’s server fleet into three categories: general-purpose
servers, storage servers with extensive SSD or HDD capacity de-
signed for databases or distributed file systems, and AI servers
equipped with GPUs or accelerators. DCPerf primarily focuses on
workloads running on general-purpose servers.

Workload selection. Although Meta operates thousands of ser-
vices on general-purpose servers, they can be classified into a
smaller number of workload categories, and we design benchmarks
to model each category separately. The workload categories cur-
rently modeled in DCPerf are shown in the first row of Table 1.
We chose these workloads because they are the top consumers of
power in Meta’s fleet. Note that the “Web” category consists of
two benchmarks, MediaWiki and DjangoBench, which model the
frontend web application of Facebook and Instagram, respectively.
Mediawiki. The Mediawiki benchmark represents a classic web
application. It runs Nginx [31] together with HHVM [28] as the
web server, with MediaWiki [1] as the website to serve. It uses
MySQL [45] as the backend database and Memcached [12] as the
cache to accelerate processing and reduce database load. Siege [13]
is used as the load generator to access several endpoints of the Me-
diaWiki website, such as the Barack Obama page from Wikipedia,
the edit page, the user login page, and the talk page. The Medi-
aWiki benchmark runs all components on a single machine, pushes
CPU utilization above 90%, and measures both the number of re-
quests the HHVM server can handle per second and the latency
distribution of the queries.
DjangoBench. DjangoBench is a web application designed to
mimic Instagram. DjangoBench uses Python, Django, and UWSGI
as the backend serving stack. Unlike MediaWiki’s multi-threading
model, UWSGI uses a multi-process model, spawning a number
of worker processes equal to the number of logical CPU cores, en-
abling it to scale up on machines with many cores. In addition,
DjangoBench uses Apache Cassandra as the backend database and
Memcached as the cache. During benchmarking, the load gener-
ator visits several endpoints, such as feed, timeline, seen, and
inbox, which mimic the main functionality of Instagram. We mea-
sure DjangoBench’s throughput and latency distribution during
benchmarking.
FeedSim. FeedSim models newsfeed ranking and operates on a
single machine. It simulates key application logic, including fea-
ture extraction, ranking, backend I/O, and response composition.
FeedSim is implemented using the open-source framework OLD-
ISim [17], along with a set of libraries representing the datacenter
tax, such as Thrift [38], Fizz [18], Snappy [16], and Wangle [35].
The client generates load to determine the maximum request rate
FeedSim can handle while maintaining the 95th percentile latency
within the SLO of 500ms.
SparkBench. SparkBench models query execution in a data ware-
house. It uses a synthetic, representative dataset (over 100GB), from
which SparkBench builds the Spark table at the beginning of bench-
marking. The dataset, the Spark table, as well as the shuffle and
temporary data, are stored on a RAID array created from remote
NVMe SSDs on storage servers. These remote SSDs are connected
to the SparkBench server via NVMe-over-TCP, with sufficient I/O
bandwidth representative of real-world data center settings. Spark-
Bench runs Spark [48] or Presto [37] as the backend query pro-
cessing engine. SparkBench executes a Spark SQL query that scans
the full dataset, performs a series of database operations, such as
joining and comparison, and then writes query results to a new
table. The entire benchmark execution is split into three stages:
the first and second stages mainly load data from the tables and
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are I/O-intensive, whereas the third stage is computation-intensive.
Thus, the total query execution time reflects the end-to-end data
warehouse performance, while the execution time of the last stage
can be used to evaluate CPU performance.
TaoBench. TaoBench is a read-through, in-memory cache modeled
after TAO [3]. TaoBench consists of a Memcached-based server and
a Memtier-based client. Both the server and the client are modified
to mimic TAO request generation and processing at a very high
rate. The server spawns a number of so-called fast and slow threads.
When a request encounters a cache hit in Memcached, a fast thread
simply returns the cached object to the client. However, in the case
of a cache miss, the request is dispatched to a slow thread, which
simulates backend database lookup delay, new object creation, and
Memcached insertion using the SET command. The object sizes, hit
rate distribution, and network throughput are all modeled after the
actual TAO production workload. The benchmark measures cache
hit rate and request throughput.
VideoTranscodeBench. VideoTranscodeBench uses open-source
encoders such as ffmpeg, x264, and svt-av1. We generate realistic
configurations for a typical video processing pipeline (resizing and
encoding) and leverage the open-source Netflix El Fuente video [25,
30] as a representative dataset. At the beginning of benchmarking,
each CPU core is utilized by one ffmpeg instance to (1) resize a video
clip into multiple resolutions and (2) encode the resized video clip
with the specified video encoder. This benchmark is embarrassingly
parallel and can push CPU utilization to more than 95%.
Datacenter Tax Microbenchmarks. Some common library func-
tions used by datacenter applications, such as those for RPC, encryp-
tion, hashing, serialization, concurrency management, and memory
operations, are unrelated to the applications’ business logic but are
necessary for optimal performance at scale in datacenters. We call
these the “datacenter tax,” which has been reported to comprise
nearly 30% of CPU cycles across Google’s fleet [23] and 18-82% of
CPU cycles depending on the application across Meta’s fleet [39].
Because of their importance, we model these functions as a set
of microbenchmarks. When performance bottlenecks are identi-
fied in these functions during full-workload benchmarking, we use
these microbenchmarks to pinpoint the problem and guide targeted
optimizations. Additionally, these microbenchmarks are valuable
indicators—if a server SKU performs poorly on them, it is likely to
exhibit subpar performance for many applications.

3.3 DCPerf Implementation
DCPerf implementation is two-fold. For the benchmarks themselves,
we selected open-source software stacks and libraries that are being
used by Meta or closely mimic Meta’s production workloads, and
patch them to ensure the characteristics alignment across different
levels. Table 2 demonstrates the major software stacks and program-
ming languages of each benchmark. For the DCPerf automation
framework, it is implemented mostly with Python and Shell scripts.

We have a small team directly working on DCPerf design, devel-
opment, and maintenance over the past few years. We continuously
improve DCPerf and make major external releases when there are
significant changes. We welcome external contributions, and in
fact, some CPU vendors have already contributed.

Benchmark Software Stacks
Programming
Languages

MediaWiki
HHVM, MediaWiki

Memcached, MySQL, Nginx, wrk
PHP, Hack

DjangoBench
Django, UWSGI

Apache Cassandra, Memcached
Python, C++

FeedSim

OLDIsim
Compression (Zlib, Snappy)

Crypto (OpenSSL, libsodium, fizz)
Protocol (FBThrift, RSocket, Wangle)

C++

TaoBench
Memcached, Memtier
Folly, fmt, libevent

C++

SparkBench Apache Spark, OpenJDK Java, SparkSQL
VideoTranscode ffmpeg, svt-av1, libaom, x264 C++
Table 2: Major software stacks and programming languages
of DCPerf benchmarks.

4 Evaluation
We evaluate whether DCPerf adequately represents the perfor-
mance characteristics of datacenter applications. Our evaluation
aims to answer the following questions:
• How accurately can DCPerf project the performance of different
generations of servers for datacenter workloads? (Section 4.1)

• Do DCPerf benchmarks and real-world applications exhibit sim-
ilar profiles in the micro-level metrics: instruction stalls (Sec-
tion 4.2), microarchitecture metrics such as IPC and cache misses
(Section 4.3), power consumption (Section 4.4), and CPU cycles
spent in application logic and “datacenter tax” (Section 4.5)?

• How does DCPerf compare with other datacenter-oriented bench-
marks, such as CloudSuite [11]? (Section 4.6)

4.1 Projection Accuracy Across Different CPUs
A primary goal of DCPerf is to help select the most cost-effective
and power efficient next-generation x86 or ARM CPUs from new
offerings by various vendors. To benefit from the latest technology,
Meta typically evaluates cutting-edge CPUs that are still under de-
velopment. This means that CPU samples are either unavailable to
Meta or insufficient to run Meta’s hyperscale production workloads
for performance measurement. Instead, CPU vendors run DCPerf
benchmark traces on their simulators or end-to-end benchmarks on
their early silicon samples to guide their design and optimization,
and also report the benchmark results to Meta. Meta uses these
results to project the performance of production workloads on next-
generation CPUs, guiding early decision in CPU selection. As the
next-generation CPUs mature and the vendors provide more sam-
ples to Meta, Meta measures the actual performance of production
workloads on those CPUs, improving the accuracy of performance
data over time.

CPU selection relies on DCPerf to accurately project the perfor-
mance of production workloads across different CPUs. To evaluate
the accuracy of DCPerf’s projections, we compare the DCPerf-
projected performance with the actual performance measured in
production at hyperscale, using four different server SKUs deployed
at Meta, as shown in Table 3. We also evaluate the projection ac-
curacy of SPEC CPU 2006 and 2017 (hereafter referred to as SPEC
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SKU1 SKU2 SKU3 SKU4
Logical cores 36 52 72 176
RAM (GB) 64 64 64 256
Network bandwidth (Gbps) 12.5 25 25 50
Storage 256GB SATA 512GB NVMe 512GB NVMe 1TB NVMe
Year of introduction 2018 2021 2022 2023

Table 3: Specification of x86-based production server SKUs.
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Figure 2: Performance of different SKUs normalized to SKU1.
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Figure 3: Relative error of performance projection.

2006 and 2017 for brevity). We select a subset of the entire SPEC
CPU benchmark suite, as we found it better representing Meta’s
workloads, before DCPerf was introduced. The evaluation of Cloud-
Suite [11] is presented in Section 4.6 because it is not sufficiently
scalable to produce comparable results.

Figure 2 shows the comparison result. The performance score of a
benchmark suite is the geometric mean of the scores of its individual
benchmarks1, normalized to those on SKU1. The performance score
of the production workloads is calculated as the geometric mean of
the performance scores of DCperf’s counterparts in the production
(aggregated from thousands of servers), also normalized to those
on SKU1 and weighted by each workload’s power consumption in
our fleet. To highlight the differences more clearly, we transform
the data in Figure 2 into Figure 3, showing the projection errors of
the benchmark suites relative to the production workload’s actual
measurements. The projection errors are 0% for SKU1 because it is
used as the baseline for calibration.

DCPerf more accurately reflects the performance of production
workloads on different SKUs. For example, for SKU4, DCPerf’s pro-
jection is only 3.3% higher than the actual performance, while the
projections from SPEC 2006 and 2017 are 20.4% and 27.8% higher,
respectively. Interestingly, although SPEC 2017 is considered an
improved version of SPEC 2006, its projection for datacenter work-
loads is actually less accurate than the older SPEC 2006. Regardless,
neither SPEC 2006 nor SPEC 2017 is sufficiently accurate for pro-
jecting performance for datacenter workloads, especially on servers
with many cores.

1The score of an individual benchmark is defined as its application metric (such as
RPS request per second) normalized to that on SKU1.
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Figure 4: Comparing TMAM profiles across Prod, DCPerf,
and SPEC 2017. “Cache (prod)” is the production workload
that TaoBench models, “Ranking (prod)” is the production
workload that FeedSim models, and so forth.

DCPerf performs robustly across servers with radically different
configurations. From SKU1 to SKU4 over six years, overall server
performance increases by 4.5 times, the core count rises from 36
to 176, RAM expands from 64GB to 256GB, network bandwidth
grows from 12.5Gbps to 50Gbps, and storage transitions from SATA
to NVMe. Despite these significant changes, DCPerf’s projection
errors remain under 3.3%. This demonstrates that our methodology
for building benchmarks is resilient to technological evolution.

4.2 Top-down Microarchitecture Metrics
In addition to accurately modeling the end-to-end performance
of real-world applications, we strive to ensure that DCPerf bench-
marks reflect the microarchitecture performance characteristics
of these applications. However, perfect alignment in micro-level
metrics is unrealistic for several reasons. First, the benchmark’s
codebase is significantly smaller, by orders of magnitude, compared
to its counterpart applications. Second, application code evolves
rapidly; for instance, Facebook’s web application undergoes thou-
sands of code changes daily. Third, alignment spans more than
a dozen microarchitecture metrics, making it inherently multi-
dimensional. Adjusting benchmarks to align on certain metrics
may lead to divergences in others.

Therefore, our goal is not to achieve perfect alignment but rather
to use significant misalignment as an indicator for identifying ar-
eas of improvement in the benchmarks, as their refinement is a
never-ending process. In this section, we assess alignment using the
microarchitecture metrics defined by the Top-down Microarchitec-
ture Analysis Method (TMAM) [47]. In the next section, we employ
more fine-grained microarchitecture metrics for this purpose.

TMAM can expose architectural bottlenecks despite the latency-
masking optimizations in modern out-of-order CPUs. It identifies
bottlenecks in terms of the percentage of “instruction slots”, defined
as the fraction of hardware resources available to process micro-
operations that are wasted due to stalls in each cycle. The stalls are
categorized as: (1) frontend stalls due to instruction fetch misses; (2)
backend stalls due to pipeline dependencies and data load misses;
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Figure 5: Average values for the different causes of stalls.
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Figure 6: IPC per physical core (with SMT On).

(3) incorrect speculative execution due to recovery from branch
mispredictions; and (4) retiring of useful work.

Figure 4 compares the TMAM profiles across production work-
loads, DCPerf, and SPEC CPU 2017. These experiments were run
on SKU2 described in Table 3, as it is the most widely used SKU
in Meta’s fleet as of 2024. Overall, DCPerf’s TMAM profiles are
reasonably close to those of the production workloads, although
DjangoBench has a relatively larger disparity with respect to “IG
Web (prod)” in stalls due to the backend and retiring. In contrast,
the SPEC benchmarks show significantly different TMAM profiles
compared to the production workloads, with backend stalls varying
much more drastically across the benchmarks. To make the overall
trend clearer, we compare the average values in Figure 5. It clearly
shows that SPEC has far fewer frontend stalls. This is because the
SPEC benchmarks have a small codebase and, hence, fewer frontend
stalls due to instruction cache misses.

4.3 Fine-Grained Microarchitecture Metrics
In addition to TMAM, we use detailed microarchitecture metrics to
evaluate DCPerf.
IPC (Figure 6). The IPC of production workloads and DCPerf
benchmarks varies similarly within the range of 1.0 to 2.6. In con-
trast, the IPC of SPEC 2017 benchmarks varies over a much wider
range of 0.6 to 3.3. Overall, the IPC of DCPerf benchmarks closely
matches that of production workloads, except for a wider gap be-
tween IG Web (IPC 1.0) and DjangoBench (IPC 1.4). This difference
is consistent with the discrepancy in their TMAM profiles, where
DjangoBench has significantly fewer backend stalls compared to IG
Web. Further improving DjangoBench is an area of ongoing work.
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Figure 8: L1 I-Cache misses (MPKI).

Memory bandwidth (Figure 7). The memory bandwidth con-
sumption of production workloads varies between 19 and 36 GB/s,
while DCPerf ranges from 17 to 33 GB/s, both consuming around
∼30% of the system’s memory bandwidth. In contrast, SPEC bench-
marks exhibit a much wider range, from 0.3 to 68 GB/s (as high as
∼70% of the system’s memory bandwidth). Compared to production
workloads, SPEC benchmarks tend to consume either significantly
more or significantly less memory bandwidth, indicating that they
are not representative of datacenter workloads. In contrast, DCPerf
benchmarks generally align closely with the memory bandwidth
consumption of production workloads, with one notable exception:
TaoBench (17 GB/s) compared to the cache production workload
(29 GB/s). This suggests that TaoBench’s data working set is smaller,
resulting in a higher hit rate in caches. Improving TaoBench’s mem-
ory profile is an area of ongoing work.
L1 I-Cachemiss (Figure 8). The productionworkloads andDCPerf
benchmarks exhibit comparable L1 I-Cache misses per kilo instruc-
tions (MPKIs), ranging from 7 to 56. Some workloads, such as IG
Web and FB Web and their representative benchmarks, have more
I-Cache misses due to their large codebase; whereas other work-
loads like Cache in production and TaoBench, have high I-Cache
misses yet with much smaller code footprint because they exhibit
frequent context switches resulted from their high thread-to-core
oversubscription ratio. In contrast, the SPEC benchmarks have sig-
nificantly lower miss rates, ranging from 1 to 9. This indicates that
the instruction working set of SPEC benchmarks is too small rela-
tive to real-world datacenter applications, making them unsuitable
for evaluating the impact of I-Cache on performance.
CPU Utilization (Figure 9). The SPEC benchmarks primarily
focus on user-space performance, spending minimal time in the
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Figure 9: CPU utilization.

34 40 33 40 31 38 26 31 32 40 36 42 32 39 38 26 22 22 29 39 41 43 42 33 34

28 22 30 21 29 23
26 26 22

22 19 19 26 22 15 26 31 29 24 14 14 11 11 21 20

10 10 11 9 9 10 12 11 10 9 8 8 10 10
5 10 12 11 9 3 4 2 2 8 7

22 13 21 13

0

19 13

0

18 13

0

18 14

0

19 14 19 13
18 18 17 18 18 18 18 17 16

18 18

93 85
94

84 89 82 82 81 82 86 82 84 87 84 77 80 82 80 80 75 77 74 71
80 78

0

20

40

60

80

100

FB W
eb (prod)

M
ediaw

iki

IG
 W

eb (prod)
D

jangoBench

R
anking (prod)

FeedSim

Video1 (prod)
VideoBench1

Video2 (prod)
VideoBench2

Video3 (prod)
VideoBench3

Average (prod)
Average (D

C
Perf)

perlbench
gcc
m

cf
om

netpp
xalanchbm

k
x264
deepsjeng
leela
exchange2
xz Average (SPEC

)
Prod & DCPerf SPEC17

Pe
rc

en
ta

ge
 o

f P
ow

er
 (%

)

Core SoC Non-Core DRAM Other

Figure 10: Power Consumption.

kernel. In contrast, both production workloads and DCPerf bench-
marks spend a significant portion of their time in the kernel. No-
tably, the cache production workload and TaoBench spend around
30% of their time in the kernel, as the caching logic involves limited
user-space processing and significant time in the kernel for net-
work and storage I/O operations. Another difference is that SPEC
benchmarks typically drive CPU utilization to 100%, while some
production workloads and DCPerf benchmarks only reach 60-70%.
This discrepancy stems from several factors: the CPU not being
the bottleneck resource, internal synchronization bottlenecks in
the code, or SLO violations (e.g., latency and error rates) occurring
before CPU utilization reaches 100%.

4.4 Power Consumption
We rely on sensors on the server’s motherboard to measure power
consumption. Figure 10 shows the power consumption broken
down into four categories: CPU core, CPU SoC non-core (e.g., inter-
connect and memory controller), DRAM, and others (e.g., storage,
NIC, BMC and fans). Each component’s power consumption is nor-
malized to the server’s total designed power. In this experiment,
VideoBench is configured with three different video quality settings,
which affect its power consumption.

Overall, the average power consumption across the production
workloads, DCPerf, and SPEC is 87%, 84%, and 78%, respectively, in-
dicating that DCPerf is more accurate than SPEC in modeling power
consumption. The breakdown of DCPerf’s individual benchmarks’
power consumption is reasonably close to that of the production
workload it models. However, overall, DCPerf tends to overrepre-
sent the CPU core’s power consumption and underrepresent the
power consumption of non-core and “other” components. This is
an area for improvement for DCPerf.
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Figure 11: Core frequency in GHz.
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Figure 12: Breakdown of CPU cycles spent in hot functions.
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the rest are the datacenter tax.

As clock frequency impacts power consumption, we show the
CPU core frequency when running different workloads in Figure 11.
The production workloads and DCPerf benchmarks exhibit similar
core frequencies, averaging 1.94 GHz and 1.92 GHz, respectively. In
contrast, the SPEC benchmarks typically run at higher frequencies
overall, averaging 2.12 GHz. Despite the higher CPU core frequency,
the overall power consumption of the SPEC benchmarks still trends
lower than that of the production workloads and DCPerf, because
they do not sufficiently exercise the diverse components in CPUs
and, more broadly, in servers as a whole.

4.5 Datacenter Tax versus Application Logic
Previous work [39] [23] [22] have shown that datacenter appli-
cations spend a significant number of cycles on library code not
directly related to application logic, such as RPC and compres-
sion. These functions are often referred to as the “datacenter tax.”
When developing the DCPerf benchmarks, we profile production
workloads and make efforts to tune the code composition in the
benchmarks so that the ratios of CPU cycles spent on application
logic and various categories of datacenter tax are close to those in
production workloads.

Figure 12 shows the breakdown of CPU cycles spent in differ-
ent hot functions, some belonging to application logic and others
to the datacenter tax. Although the impact of different categories
of the tax varies widely across workloads, DCPerf benchmarks,
overall, reasonably reflect the datacenter tax. One exception is that
TaoBench spends significantly less time on compression and serial-
ization compared to the production workload it models. Addressing
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Figure 13: CloudSuite’s benchmarking results.

this is an area for future work. Despite this limitation, DCPerf rep-
resents a significant advancement in accounting for and evaluating
the datacenter tax, an aspect overlooked by previous benchmarks.

4.6 Evaluating Alternatives: CloudSuite
To identify reasonable comparison baselines for evaluating DCPerf,
we explored several relevant benchmark suites [10, 11, 14, 24, 34,
41, 44, 46] that share similar goals of benchmarking datacenter
applications. However, we found that they all fell short of repre-
senting Meta’s datacenter workloads. In this section, we present
performance results for CloudSuite [11] as an example.

CloudSuite’s Data Caching benchmark runs Memcached with
the Twitter dataset [29]. Its function is similar to DCPerf’s TaoBench,
though Data Caching does not implement the behavior of a read-
through cache. We ran Data Caching on both SKU4 and SKU-A
servers (see Tables 3 and 4 for server configurations). To drive up
CPU utilization and maximize throughput, we experimented with
different configurations for Data Caching, varying the number
of server instances, server threads, and client threads. We report
the results for the best configuration in Figure 13a, which shows
the requests per second (RPS) achieved on the two server SKUs at
various levels of CPU utilization.

On SKU-A with 72 cores, when CPU utilization increases from
12% to 88%, a 7.3-fold increase, the throughput increases by only 26%,
showing that Data Caching has limited scalability. On SKU4 with
176 cores, the throughput actually decreases as both the thread pool
size and CPU utilization increase, indicating a performance anomaly.
In addition, the portion of “datacenter tax” in the benchmark is
not modeled accurately to reflect the CPU cycles consumption in
Meta’s production. Moreover, we encountered segmentation faults
in the client when trying to use more than five Memcached server
instances. Overall, this experiment shows that Data Caching is
not optimized to scale effectively on modern servers with very high
core counts.

CloudSuite’s Web Serving benchmark runs the open-source
social networking engine Elgg [7] using PHP and Nginx, with Mem-
cached providing caching and MariaDB serving as the database.
This benchmark is similar to DCPerf’s MediaWiki benchmark. We
run Web Serving on an SKU4 server while varying the bench-
mark’s load-scale factor from 10 to 400. Figure 13b shows the
throughput (Ops/sec), peak CPU utilization, and error rates. Web
Serving’s throughput slows down after the load scale exceeds 100,
even though CPU utilization continues increasing linearly until it

SKU-A SKU-B
Logical cores 72 160
L1-I cache size (normalized) 4× 1×
RAM (GB) 256 256
Network bandwidth (Gbps) 50 50
Server Power (Watt) 175 275

Table 4: Specification of the ARM-based new server SKUs.

reaches 100%. The rate of errors, most notably “504 Gateway Time-
out,” increases after the load scale exceeds 140, even while CPU
utilization is still below 50%. Once again, this experiment shows
that Web Serving is not optimized to scale effectively on servers
with many cores.

CloudSuite’s In-memory Analytics benchmark uses Apache
Spark to run an alternating least squares (ALS) filtering algorithm [42]
on a user-movie rating dataset called MovieLens [19]. This bench-
mark shares similarities with both SparkBench (in terms of the
software stack) and FeedSim (in terms of its function, focusing on
ranking rather than big-data queries). The MovieLens dataset’s
uncompressed size is around 1.2GB. We run this benchmark on an
SKU4 server and compare its execution time and CPU utilization
with SparkBench in Figure 13c. This benchmark only achieves about
20% CPU utilization throughout the run. We explored different con-
figurations, such as Spark parameters for parallelism, number of
executor workers, and executor cores, but failed to push the CPU
utilization of this benchmark higher. Once again, this experiment
shows that the benchmark is not optimized to scale effectively on
servers with many cores.

5 Using DCPerf: Case Studies
DCPerf is Meta’s primary tool for evaluating prospective CPUs,
determining server configurations, guiding vendors in optimizing
CPU microarchitectures, and identifying systems software ineffi-
ciencies. We describe several case studies below.

5.1 Choosing ARM-Based New Server SKUs
While the server SKUs in Table 3 are all based on x86, in 2023, we
began designing a new server SKU based on ARM. The two server
SKU candidates, SKU-A and SKU-B, shown in Table 4, use ARM
CPUs from different vendors. In the early stages of server design,
we had only a few testing servers for SKU-A and SKU-B, which
were insufficient to set up and run large-scale, real-world produc-
tion workloads for testing purposes. Therefore, we use DCPerf to
evaluate these testing servers and compare them with the existing
x86-based SKU1 and SKU4 servers shown in Table 3.



ISCA ’25, June 21–25, 2025, Tokyo, Japan Su et al.

1.7

2.4

2.0 1.9

1.4

1.8

1.3

1.6

2.8 2.7

1.9

2.7

2.3

1.8

0.9

1.9

0.3

0.7 0.8 0.8

1.6

0

0.5

1

1.5

2

2.5

3

TaoBench Feedsim DjangoBench Mediawiki SparkBench DCPerf SPEC2017

Pe
rf 

Pe
r W

at
t

SKU4 SKU-A SKU-B

Figure 14: Comparing Perf/Watt across server SKUs.

As described in Section 2.3, due to the ongoing shortage of power
in datacenters, a key metric we consider is the performance that
a server delivers per unit of power consumption (Perf/Watt), as
opposed to considering absolute performance alone. We calculate
the Perf/Watt metric as follows. While running DCPerf on a server,
we collect performance numbers and monitor the server’s power
consumption. Dividing a benchmark’s performance number by the
average server power consumption during the benchmark’s steady-
state run yields the Perf/Watt metric. However, as the benchmarks
report performance results in different scales and even different
units, we need to normalize the results. We divide each benchmark’s
raw Perf/Watt result on the new server by its Perf/Watt result on the
x86-based SKU1 server, which serves as the baseline for comparison.
Finally, we calculate the geometric mean of the Perf/Watt metrics
across all DCPerf benchmarks to produce a single Perf/Watt number
for the DCPerf suite.

Figure 14 compares Perf/Watt across different server SKUs. In
terms of Perf/Watt, ARM-based SKU-A outperforms x86-based
SKU4, our latest server SKU running in production, by 25% overall,
with the largest gain of 92% for SparkBench. In contrast, SKU-B
underperforms SKU4 by 57% overall, with the largest loss of 85%
for DjangoBench and 63% for Mediawiki, respectively. These re-
sults demonstrate that DCPerf is effective in identifying SKU-B’s
weaknesses in running datacenter applications, especially its ineffi-
ciency in handling user-facing web workloads, due to its smaller
L1 I-Cache, which is not well-suited for the large code base of web
workloads. With DCPerf’s help, we decided to choose SKU-A over
SKU-B as the next-generation ARM-based server SKU in our fleet.

This evaluation also shows that comparing Perf/Watt may lead to
a different conclusion than comparing absolute performance. This
is especially important when comparing ARM-based servers, which
may be more power-efficient, with x86-based servers, which may
offer better absolute performance. Specifically, ARM-based SKU-A
has lower absolute performance but better Perf/Watt compared to
x86-based SKU4. However, it is important to note that this is not
a general conclusion about ARM and x86; SKU selection critically
depends on the specific implementation of individual CPU products.
For example, ARM-based SKU-B is inferior to x86-based SKU4 in
terms of both Perf/Watt and absolute performance.

In this experiment, we also evaluate SPEC 2017’s effectiveness in
comparing the server SKUs. If we had relied on SPEC for decision-
making, we would have incorrectly concluded that the ARM-based
SKU-B is better than the x86-based SKU4. Moreover, because SKU-A
and SKU-B are comparable in terms of Perf/Watt (1.8 versus 1.6) in
the SPEC results, we would not have been able to decisively reject
SKU-B and would have had to compare subtle differences in many
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Figure 15: Impact of the vendor’s improvement in the CPU’s
cache replacement algorithm. GIPS on the x-axis means Giga
Instructions Per Second.

other factors, such as price, vendor support, and CPU reliability,
hoping that one of those factors would provide a significant enough
difference to facilitate decision-making.

Finally, Figure 14 also demonstrates that different benchmarks,
and their corresponding production workloads, scale performance
differently across two server SKUs. Specifically, in terms of Per-
f/Watt, SKU-A outperforms SKU4 by 92% for SparkBench, while
both perform nearly identically for MediaWiki. Although it is theo-
retically possible to design SKUs optimized for specific applications,
this approach incurs high costs for introducing and maintaining
additional SKUs in a hyperscale fleet and leads to resource waste
due to SKU mismatches. For example, when one application’s load
grows slower than anticipated, the oversupply of its custom server
SKU cannot be efficiently utilized by other applications. There-
fore, SKU selection must consider benchmarks representing a wide
range of workloads rather than focusing on individual ones. This
is why, in Figure 2, we compare the aggregate performance across
benchmarks in the suites rather than individual benchmarks.

5.2 Guiding Vendors to Optimize CPU Design
DCPerf not only benefits Meta in server SKU selection but also ben-
efits CPU vendors by allowing them to independently run DCPerf
in their in-house development environments to iteratively improve
their new CPU products. In 2023, we collaborated with a CPU
vendor to introduce their next-generation CPU to our fleet and op-
timize its performance in the process. One of the microarchitecture
optimizations the vendor conducted was to iteratively improve the
microcode for managing the CPU’s cache replacement algorithm
to enhance the cache hit rate.

As shown in Figure 15, in the vendor’s development environ-
ment, this optimization improved the MediaWiki benchmark’s per-
formance by 3.5%, increased IPC by 1.9%, and reduced misses in the
L1 I-cache by 36% and in the L2 cache by 28%. Later, we tested this
optimization in Meta’s production environment and confirmed a
2.9% performance improvement on Meta’s Facebook web applica-
tion, which runs on more than half a million servers and consists of
millions of lines of code. Additionally, we confirmed improvements
in the Facebook web application’s microarchitecture metrics simi-
lar to those shown in Figure 15. In contrast, testing on SPEC 2017
revealed no noticeable performance changes. Without DCPerf, the
vendor could not have made this optimization relying only on the
standard SPEC benchmarks.
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Figure 16: TaoBench’s relative performance with different
Linux kernels and server SKUs.

In addition to the optimization described above, the CPU vendor
implemented approximately ten other microarchitecture optimiza-
tions under the guidance of DCPerf, such as tuning the uncore
frequency and policies for managing TLB coherence. Altogether,
these optimizations resulted in a 38% performance boost and a
47% Perf/Watt improvement for Meta’s Facebook web application.
Throughout the process, the vendor’s ability to quickly and inde-
pendently evaluate their optimizations in their development en-
vironment using DCPerf, which is easy to deploy yet effectively
represent Meta’s production workloads, was critical to their success.

5.3 Identifying Issues in the OS Kernel
In addition to optimizing CPU design and server selection, DCPerf
also helps identify performance issues in system software such
as the OS kernel. In 2024, to proactively prepare for scaling both
our production workloads and DCPerf benchmarks to CPUs with
significantly more cores, we tested DCPerf on server SKUs with
176 and 384 logical cores, respectively. During this process, we
observed abnormal performance results for TaoBench. TaoBench’s
performance on the 384-core SKU was only 1.6 times its perfor-
mance on the 176-core SKU, whereas we expected at least 384

176 = 2.2
times higher performance because the 384-core SKU also has other
improvements beyond the core count increase.

Among many investigations we explored, one thing we sus-
pected is that the kernel’s limited scalability could be the cause of
this performance anomaly. Therefore, we repeated the experiment
on different kernel versions. Ultimately, we found that upgrading
the Linux kernel from 6.4 to 6.9 resolved the anomaly. TaoBench’s
performance on the 384-core SKU increased to 2.5 times its perfor-
mance on the 176-core SKU, aligning with our expectation. This
experience indicated that kernel 6.4 had scalability issues when
running on servers with many cores.

We further investigated this issue using DCPerf’s extensible
hooks, which enabled us to analyze hotspots in TaoBench’s exe-
cution. On the 384-core SKU, we observed significant overhead in
kernel 6.4’s scheduling functions (e.g., enqueue_task_fair) and
the nanosleep() system call invoked by TaoBench. Further analy-
sis revealed that the root cause was lock contention on a counter
used for tracking system load, exacerbated by the large number of
CPU cores and threads. This issue was mitigated in kernel 6.9 by a
patch that reduced the update frequency of the counter [26].

To illustrate the impact of the issue and its resolution, Figure 16
shows TaoBench’s performance across various kernel versions and
server SKUs. On the 176-core SKU, the performance difference
between kernel 6.4 and 6.9 is only 3%. However, on the 384-core
SKU, TaoBench achieves 249%

162% − 1 = 54% higher performance with
kernel 6.9 compared to kernel 6.4.

Our experience debugging this issue highlights several lessons.
First, as CPU core counts continue to grow rapidly, both system

software (e.g., OS kernels) and applications are likely to encounter
scaling bottlenecks; therefore, organizations must proactively iden-
tify and address these issues. For example, limited scalability makes
CloudSuite [11] unrepresentative of modern datacenter applica-
tions. Second, debugging performance issues in system software
with DCPerf is far easier than with complex datacenter applica-
tions in production. Without DCPerf, testing production caching
workloads on exploratory server SKUs available in very limited
quantities would have been impractical.

6 Takeways: Insights and Lessons
In the previous sections, we shared our insights and lessons learned
from developing and using DCPerf. To make these takeaways more
accessible, we summarize them in this section.
Limitations of popular benchmarks: Users of SPEC CPU and
other popular benchmarks should be aware of their limitations in
representing datacenter workloads. Compared to real-world data-
center workloads, SPEC CPU overestimates runtime CPU frequency
and significantly overstates the performance of many-core CPUs,
while underestimating instruction cache misses, server power con-
sumption, and CPU cycles spent in the OS kernel. Additionally,
many full-system benchmarks, such as CloudSuite, fail to scale
effectively on many-core CPUs, leading to a significant underesti-
mation of those CPUs’ actual performance.
Benchmark generalization: Themajority of benchmarks inDCPerf
represent common workloads across the industry, including web-
serving, caching, data analytics, and media processing. Although
these benchmarks are common, their specific configurations are
derived from Meta’s workload characteristics, such as the size dis-
tribution of cached objects. If other organizations wish to have
DCPerf represent their own workload characteristics, it is possible
with some effort to change benchmark configurations to match
their workloads.
Many-core CPU: As the core counts of current and future CPUs
grow rapidly, system software (e.g., the OS kernel), applications,
and benchmarks will all face significant scaling challenges. This is
evident in the Linux kernel performance anomaly (Section 5.3) and
the limited scalability of CloudSuite (Section 4.6). Organizations
must invest sufficiently in software scalability ahead of time.
Perf/Watt: Due to power shortages in datacenters, Perf/Watt is as
important as TCO and absolute performance. CPU vendors must
prioritize Perf/Watt as a primary metric for optimization.
ARM versus x86: Our evaluation shows that ARM CPUs are now
a viable option for datacenter use, with some ARM CPUs offering
better Perf/Watt compared to certain x86 CPUs. However, the choice
betweenARM and x86 depends on the specific CPU implementation,
as some ARM CPUs we evaluated are inferior to certain x86 CPUs
in both Perf/Watt and absolute performance.
Post-silicon CPU optimization: Even after a CPU’s tapeout and
manufacturing, significant opportunities remain to enhance the
CPU performance through optimizations in microcode, firmware,
and various configurations. For instance, as described in Section 5.2,
DCPerf enabled a vendor to boost the performance of their next-
generation CPU for the Facebook web application by 38%. This
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underscores the importance of developing representative bench-
marks to support such post-silicon optimizations.
Modeling software architecture: To achieve accurate perfor-
mance projections, it is insufficient to merely model the functional
behavior of datacenter applications; instead, benchmarks must cap-
ture key aspects of their software architecture, as these applications
tend to be highly optimized. For example, TAO [3] utilizes separate
thread pools for fast and slow paths and adopts a read-through
cache instead of the more commonly used look-aside cache.
Aligningmicroarchitecturemetrics: Since benchmarks are dras-
tically simplified representations of real-world applications, perfect
alignment between their microarchitecture performance character-
istics is unrealistic. However, significant misalignment can serve as
a useful indicator for identifying areas to improve benchmarks, as
their refinement is a never-ending process.
Putting benchmarks on the critical path: Our three years of
experience in developing and using DCPerf suggest that benchmark
development is an iterative process requiring continuous invest-
ments to keep up with hardware evolution, workload changes, and
emerging use cases. Through our exploration of existing bench-
marks for potential adoption, we found that most had become out-
dated. Identifying business needs that rely on high-quality bench-
marks on the critical path is essential, as it drives continuous
improvements—a key factor behind DCPerf’s success at Meta.

7 Related Work
Benchmark suites. Over the past decades, there have been con-
tinuous efforts to build benchmarks for various workloads [4, 10,
11, 14, 20, 24, 34, 41, 44, 46]. For example, SPEC [4], which has
evolved for multiple generations, is the most popular suite for CPU
benchmarking. In addition to SPEC CPU, which is focused on CPU
core performance, it also has cloud-oriented benchmarks, such as
SPEC Cloud IaaS, SPEC jbb, and SPECvirt. Another example is
TPC [20], which models and benchmarks Online Transaction Pro-
cessing (OLTP) workloads that use transactions per second as a
metric for performance comparisons.

CloudSuite [11] provides a collection of cloud benchmarks and re-
veals several microarchitectural implications and the differences be-
tween scale-out workloads and SPECworkloads. BigDataBench [44]
collects benchmarks at different levels, ranging from the simplest
micro-benchmarks to full applications. Tailbench [24] focuses on
the performance of latency-critical applications. 𝜇Suite [41] iden-
tifies four RPC-based OLDI applications with three microservice
tiers (front-end, mid-tier, and leaf) to study OS and network perfor-
mance overhead, particularly the mid-tier, which behaves as both
an RPC client and an RPC server. DeathStarBench [14] is another
recent benchmark suite for large-scale cloud applications with tens
of RPC-based or RESTful microservices.

However, as discussed in Section 1 and Section 4.6, these bench-
marks have limitations, such as benchmark categories do not match
hyperscale workloads, mismatches with real-world software ar-
chitecture, missing system components, limited scalability, and
inadequate performance and power representativeness. For exam-
ple, the benchmarks included in SPEC Cloud IaaS and SPEC jbb are
significantly different fromMeta’s production workloads. Although

CloudSuite contains relevant benchmarks, its benchmarks cannot
scale on many-core servers, as described in Section 4.6.
Profiling datacenter workloads. Datacenter workloads have
been studied from multiple aspects. Google conducted profiling of
fleet-wide CPU usage [23], big-data processing systems [15], and the
RPC stack [36]. Meta conducted studies on datacenter networks [2,
32], microservice architecture [21, 39], and hardware optimization
and acceleration opportunities [39] [40]. DCPerf benefits from these
profiling efforts by incorporating their findings into the benchmarks
to represent production workloads.

8 Conclusion and Future Work
DCPerf is the first performance benchmark suite actively used to in-
form procurement decisions for millions of CPUs in hyperscale dat-
acenters while also remaining open source. Our evaluation demon-
strates that DCPerf accurately projects the performance of repre-
sentative production workloads within a 3.3% error margin across
multiple server generations. Our future work includes broadening
DCPerf’s coverage, especially AI-related workloads [49], whose
fleet sizes have been expanding rapidly, and improving DCPerf’s
projection accuracy. We hope that DCPerf will inspire industry
peers to open-source their well-calibrated benchmarks as well, such
as those for search and e-commerce.
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